Question
thumb_up100%
Skater A, with a mass of 72.0 kg, is moving at 11.0 m/s [S] when he collides with skater B, with a mass of 42.0 kg, moving at 14.0 m/s [E]. The collision is completely inelastic and the two skaters move off together after the collision. Find the velocity of the skaters, right after the collision.
Can you please explain why in the calculation vAy = - 11.0 m/s.
Thank you.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Similar questions
- In what way can you tell if linear momentum and/or k.E are conserved in a 1D collision? Would the impulse on both objects be the same in a collision?arrow_forwardA projectile has a mass of 10g and speed of 0.6c strikes a wall. What is the momentum of the projectile and what is the kinetic energyof the projectile? If the collision time for each projectile is 10 milliseconds what is the magnitude of the average force on the wall due to a single projectile?arrow_forwardMechanic Physics: Please make sure this is right In the figure, a ball of mass m = 56 g is shot with speed vi = 23 m/s (in the negative direction of an x axis) into the barrel of a spring gun of mass M = 263 ginitially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring. Assume that the increase in thermal energy due to friction between the ball and the barrel is negligible. (a) What is the speed of the spring gun after the ball stops in the barrel? (b)What fraction of the initial kinetic energy of the ball is stored in the spring?arrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardAs shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.476)v after passing through the target. PAC M M (a) Before collision (b) After collision The collision is inelastic and during the collision, the amount of energy lost is equal to a fraction [(0.253)KE, Pc] of the kinetic energy of the bullet before the collision. Determine the mass M of the target and the speed V of the target the instant after the collision in terms of the mass m of the bullet and speed v of the bullet before the collision. (Express your answers to at least 3 decimals.) V = M =arrow_forwardFor an isolated system where two masses collide in two dimensions (2D), check all TRUE statements: Piy = Pfy J = 0, since the x and y components cancel each other out. If the masses collide in 2D, the collision must be inelastic. Pfx =Pix If the collision is inelastic, the final momentum, Pf, can be derived by the vector addition of the momentum vectors of the two masses prior to collision.arrow_forward
- 3. Consider the following two types of completely inelastic collisions between Турe A two identical masses, m. Type A: a m m particle of mass m and velocity v strikes V a stationary target consisting of an identical particle of mass m. Type B: Туре В each particle has a mass m and a speed m m v/(22) – in this case they collide head v/2/2 V/22 on. Ignore gravity, and express your answers in terms of m and v. A. What is the speed of the center of mass for type A, and for type B collisions (before the collision occurs)? What the center of mass speed after the collision for each type of collision. Justify your answers. В. ( What is the change in the total kinetic energy for type A and type B ?arrow_forwardKindly check the answer in picture containing the question before submitting the solution.arrow_forwardDuring the collision between the ball and the racket, the velocity vector of the tennis ball is exactly reversed such that its speed is the same before and after the collision. Determine the speed of the ball assuming its mass to be 150 g. A nucleus A of mass 2 m moving with velocity 100 m/s collides inelastically with a stationary nucleus B of mass 10 m. After collision, the nucleus A travels at 90oto the original incident direction while B proceeds at an angle 37oto the original incident direction. a) Find the speeds of A and B after the collision.b) What fraction of the initial kinetic energy is gained or lost due to the collision? Two blocks having equal masses m1 = m2 = 10 kg are placed in contact on a surface inclined at an angle of 40ofrom the horizontal as shown in the figure below. The coefficient of static friction between the incline and the lower block is µs1 = 0.90 and the coefficient of kinetic friction is µk1 = 0.40. The respective coefficients between theincline and the…arrow_forward
- As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.516)v after passing through the target. The collision is inelastic and during the collision, the amount of kinetic energy lost by the bullet and paper is equal to [(0.333)Kb BC] , that is, 0.333 of the kinetic energy of the bullet before the collision. Determine the mass M of the target and the speed V of the target the instant after the collision in terms of the mass m of the bullet and speed v of the bullet before the collision. (Express your answers to at least 3 decimals.) V =____v M = ___marrow_forwardA mass ma = 2kg slides down slippery ramp, reaching a speed v = 10 m/s at the bottom. After reaching the level ground ma collides with mass mg = perfectly inelastic collision. 3kg at bottom, sticking together in a a.) What was the height of the ramp, assuming that m, started from rest? b.) How fast were the combined masses ma and mg moving after sticking together? c.) The combined mass runs into a spring, which brings it to a stop after being compressed 7 cm. What is the spring constant k ?arrow_forwardA ball is thrown at an astronaut in deep space, and strikes the astronaut at vm/s. What is the difference between the amount of momentum the astronaut would acquire from catching the ball, and the amount that he would acquire if he lets it rebound off of him at a velocity of -v?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios