College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Two objects, both with a mass of 1.91 kg are sliding across a horizontal, frictionless surface toward each other. If mass 1 has an initial velocity of 3.5 m/s i and mass 2 has an initial velocity of -2.46 m/s i, what is the change in total kinetic energy if they undergo a perfectly inelastic collision? Assume that total momentum is conserved.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at voi = 3.00 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of 0 = 35.0° with the horizontal axis while the green disk makes an angle of o 55.0° with this axis as in Figure b. Determine the speed of each disk after the collision. Vof = m/s Vaf = m/s After the collision Before the collision Need Help? Watch It Read Itarrow_forwardA 13 kg mass traveling at 4 m/s meets and collides with a 3 kg mass traveling at 6 m/s in the opposite direction. The objects bounce off of each other. Take the rightward direction to be positive. Name the type of collision (elastic or inelastic). Then find the final velocities of both objects.arrow_forwardOne object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 29 m/s. The masses of the two objects are 2.8 and 8.8 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is the one moving initially and the case (b) when the small-mass object is the one moving initially.arrow_forward
- A car and a small truck traveling at right angles to one another with the same speed collide and stick together. The truck's mass is roughly twice the car's mass. Sketch the direction of their momentum vector immediately after the collision. Explain your result.arrow_forwardA rigid ball of mass m and velocity u undergoes an inelastic collision with another rigid ball of mass m and velocity -u. After the collision, the balls stick together. Find the mass of the composite object after the collision. What must |u| be for the composite object mass to be 3m?arrow_forwardTwo shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 6.55 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of θ = 38.0° with the horizontal axis while the green disk makes an angle of ϕ = 52.0° with this axis as in Figure b. Determine the speed of each disk after the collision. vof = m/svgf = m/sarrow_forward
- Two identical pucks collide on an air hockey table. One puck starts at rest. The incoming puck has a speed of 6.00 m/s and scatters to an angle of 30.0º. Use the fact that Θ1 – Θ2 = 90º for elastic collisions of objects that have identical masses — in other words, the pucks move apart at a right angle. (a) Sketch the collision, with angles labeled. (b) What is the velocity (magnitude and direction) of the second puck after it is struck?arrow_forwardObject 1 with a mass of 4.70 kg, moving right at a speed of 7.80 m/s along a frictionless surface, collides head-on with Object 2 with a mass of 3.30 kg moving left at a speed of 10.6 m/s. After the collision, the Object 1 is moving left at 2.40 m/s. 10. What is true about the total momentum before and after the collision? O Equal in magnitude but opposite in direction O Different in magnitude and direction O Equal in magnitude and direction O Different in magnitude but in the same directionarrow_forwardTwo masses approach each other and make a head-on, completely elasticcollision. The system is isolated from any external forces during impact. The initialspeeds are u 1 = 2.00 m/s and u2 = 4.00 m/s, and the mass values are m1 = 0.500 kg and m2 = 3.00 kg. (a) Find the total momentum of the system before the collision. (b) What is the velocity of particle 1 relative to particle 2 before the collision? (c) Determine the velocities of particle 1 and (d) particle 2 after the collision. (e) What impulse acted on particle 1 during the collision?arrow_forward
- Two objects, both with a mass of 1.92 kg are sliding across a horizontal, frictionless surface toward each other. If mass 1 has an initial velocity of 3.79 m/s i and mass 2 has an initial velocity of -2.39 m/s i, what is the change in total kinetic energy if they undergo a perfectly inelastic collision? Assume that total momentum is conserved.arrow_forwardA block with mass M = 5.60 kg is sliding in the positive x-direction at Vi = 8.00 m/s on a frictionless surface when it collides elastically in one dimension with a stationary block with mass m = 1.30 kg. Determine the velocities, Vf and vf, of the objects after the collision. Vf = ? vf = ?arrow_forwardTwo shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 5.80 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of ? = 34.0° with the horizontal axis while the green disk makes an angle of ? = 56.0° with this axis as in Figure b. Determine the speed of each disk after the collision.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON