Question
Two lined conductors are connected by a resistor R=30Ω, and separated by L=5. A moving conductor of mass m slides on the conductors at a constant speed v, which produces a current I=4 A. The conductors are placed in a B=6T magnetic field out of the page.
In what direction does the current flow through the moving conductor when the bar is sliding in the direction as shown in the figure?
From the previous question, calculate the speed at which the bar is moving.
From the previous question, calculate the magnitude and direction of magnetic force on the bar.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- The above picture depicts a moveable vertical conducting bar sliding on fixed conducting rails. At time t, what is the formula for the power delivered by the magnetic field of magnitude B onto the bar of length L that is moving to the right at speed v with current I flowing through it? Group of answer choices + I L B v t 0 + I L B v − I L B v − I L B v tarrow_forwardIn each of the figures below, a uniform magnetic field B points in the +x-direction. The magnitude of the field is 1.50 T. In each figure, a square loop, shown edge-on, with sides of length l = 0.255 m, is oriented within the magnetic field as shown. In the left figure, the loop is oriented vertically, perpendicular to the magnetic field. In the middle figure, it is tilted such that the plane of the loop makes a 60.0° angle with the magnetic field. In the right figure, the loop is oriented horizontally, parallel to the magnetic field. y 60.0° What is the magnetic flux (in Wb) through the loop in each of the three cases shown? (a) perpendicular to the magnetic field Wb (b) 60.0° from the magnetic field Wb (c) parallel to the magnetic field Wbarrow_forwardA loop of wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r = 0.28 m. The normal to the plane of the loop is parallel to a constant magnetic field (p = 0°) of magnitude 0.82 T. What is the change AO in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through half a revolution? B (into paper) ΔΦ = iarrow_forward
- A loop of wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r = 0.27 m. The normal to the plane of the loop is parallel to a constant magnetic field (φ = 0˚) of magnitude 0.87 T. What is the change ΔΦ in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through half a revolution?arrow_forwardA loop of wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r = 0.22 m. The normal to the plane of the loop is parallel to a constant magnetic field (φ = 0˚) of magnitude 0.90 T. What is the change ΔΦ in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through half a revolution?arrow_forwardIn the figure, an electron with an initial kinetic energy of 3.80 keV enters region 1 at time t = 0. That region contains a uniform magnetic field directed into the page, with magnitude 0.00620 T. The electron goes through a half-circle and then exits region 1, headed toward region 2 across a gap of 22.0 cm. There is an electric potential difference AV = 2000 V across the gap, with a polarity such that the electron's speed increases uniformly as it traverses the gap. Region 2 contains a uniform magnetic field directed out of the page, with magnitude 0.0157 T. The electron goes through a half-circle and then leaves region 2. At what time t does it leave? B₁ Region 1 Number i Units Region 2 OB₂arrow_forward
- A loop of wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r = 0.30 m. The normal to the plane of the loop is parallel to a constant magnetic field (p = 0°) of magnitude 0.79 T. What is the change AO in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated through half a revolution? B (into paper) ΔΦ = > i * хarrow_forwardA positively-charged ion travelling at 250 m sis fired between two parallel charged plates, M and N. There is also a magnetic field present in the region between the two plates. The direction of the magnetic field is into the page as shown. The ion is travelling perpendicular to both the electric and the magnetic fields. M ✗ ✗ X X (+) ✗ ✗ N The electric field between the plates has a magnitude of 200 V m¹. The magnetic field is adjusted so that the ion passes through undeflected. What is the magnitude of the adjusted magnetic field, and the polarity of the M terminal relative to the N terminal? Magnitude of magnetic field Polarity of M relative to N (teslas) A. 0.8 positive B. 0.8 negative C. 1.25 positive D. 1.25 negativearrow_forward
arrow_back_ios
arrow_forward_ios