Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
To manufacture a piston with a circular cross section, an alloy steel bar is required whose length is fixed and has a value of 35 cm and must withstand a compression load of 5.2 tons. For its design, a safety factor of 4/5 is suggested with respect to the yield stress. The shear modulus for
1)During an accident, the piston rod receives an impact with an energy of 250 kJ / m³. Is the bar deformed
elastically, plastically or does it fracture? justify your answer
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Part B The stress-strain diagram for a steel alloy having an original diameter of 1.0 in. and a gage length of 7 in. is shown in the figure below. (Eigure 1) Determine the load on the specimen that causes yielding. Express your answer to three significant figures and include appropriate units. HA Py- Value Units Submit Request Answer Part C Figure t oft> Determine the ultimate load the specimen will support. Express your answer to three significant figures and include appropriate units. NO 70 60 50 P. - Value Units 40 30 20 Submit Bequest Answer 10 (in/in) o G04 0m 12 016 020 024 02 a aa omams Provide Feedbackarrow_forwardDetermine the size of a piston rod subjected to a total load of having cyclic fluctuations from 15 kN in compression to 25 kN in tension. The endurance limit is 360 MPa and yield strength is 400 MPa. Take impact factor = 1.25, factor of safety = 1.5, surface finish factor = 0.88 and stress concentration factor = 2.25.arrow_forwardA tie rod made of quenched and tempered 4340 steel is used as a critical linkage in an industrial apparatus. The rod is subjected to an alternating cyclic tensile/compressive stress from 550 MPa to -550 MPa. An inspection of the rod revealed a 3.5 mm deep edge crack on the surface of the rod. Please answer the following question for the rod given the properties in the table and curve below and fracture toughness of 55 MPa√m. (NOTE: Y=1.12 for edge crack and use “a” not “2a” for the length of the crack) 1. What is the minimum crack size that would cause instantaneous fast fracture at the current maximum axial tensile loading, assuming plane strain conditions apply? If the resolution limit of the flaw detection apparatus were 1.5 mm, would this flaw be subject to detection? Show calculations to back up your conclusions.arrow_forward
- A tie rod made of quenched and tempered 4340 steel is used as a critical linkage in an industrial apparatus. The rod is subjected to an alternating cyclic tensile/compressive stress from 550 MPa to -550 MPa. An inspection of the rod revealed a 3.5 mm deep edge crack on the surface of the rod. Please answer the following question for the rod given the properties in the table and curve below and fracture toughness of 55 MPa√m. (NOTE: Y=1.12 for edge crack and use “a” not “2a” for the length of the crack) 1. Given the S-N curve for 4340 steel, is there an endurance limit? If so, what is the stress value for the endurance limit? 2. If there were no cracks and the stress on the rod still alternated from 550 MPa to -550 MPa with mean stress of zero, what would be the cycles to failure?arrow_forwardA 30-mm thick AISI 1020 steel plate is sandwiched between two 10-mm thick 2024-T3 aluminum plates and compressed with a bolt and nut with no washers. The bolt is M10 x 1.5. property class 5.8. (a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm. (b) Determine the bolt stiffness. (c) Determine the stiffness of the members.arrow_forwardFor a 1040 steel solid square bar, determine the endurance limit or Se based on the following information describing the loading condition, reliability factor, etc.arrow_forward
- To manufacture a piston with a circular cross section, an alloy steel bar is required whose length is fixed and has a value of 35 cm and must withstand a compression load of 5.2 tons. For its design, a safety factor of 4/5 is suggested with respect to the yield stress. The shear modulus for that alloy is 80 GPa.To know the resistance of this steel alloy, a compression test was carried out on a specimen of the same material, from this test the data table of stress against engineering deformation shown was obtained. Image 1 1) Calculate the increase in the diameter of the bar when the load is applied2) Define the Poisson's ratio and calculate its valuearrow_forwardPlease show work clearlyarrow_forwardA tensile-testing apparatus is to be constructed that must withstand a maximum load of 293516 N. The design calls for two cylindrical support posts, each of which is to support half of the maximum load. Furthermore, plain-carbon(1045) steel ground and polished shafting rounds are to be used; the minimum yield and tensile strengths of this alloy are 343 MPa and 565 MPa(82,000 psi), respectively. Specify a suitable diameter in mm for these support posts. Assume safety level is 2.3. Round your answer to 2 significant figures.arrow_forward
- What is the maximum value of KIc as per LEFM that can be determined from experiments on a 20 mm thick plate? yield strength= 500 MPa, E= 210 GPa, poission ratio=0.3.arrow_forwardRequired information Given a bar made of brittle material, properties of Sut= 30 kpsi and Suc = 90 kpsi and with stresses of Ox= -15 kpsi, Oy= 10 kpsi, and Txy=-15 kpsi. For the given state of plane stress, determine the factor of safety using the Coulomb-Mohr theory. The factor of safety isarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY