College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 15.2 V and b = -3.50 V/m.
a) Determine the potential at x= 0, x= 3.00 m, and x= 6.00 m.
b) Determine the magnitude (Vm) and direction of the electric field at x= 0, x= 3.00 m, and x= 6.00 m.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 15.8 V and b = -6.70 V/m. (a) Determine the potential at x = 0. V Determine the potential at x = 3.00 m. V Determine the potential at x = 6.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. V/m magnitude direction |---Select--- ✓ Determine the magnitude and direction of the electric field at x = 3.00 m. magnitude V/m direction ---Select--- ✓ Determine the magnitude and direction of the electric field at x = 6.00 m. magnitude V/m direction --Select--- ✓arrow_forwardThe potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 20.0 V and b = -6.50 V/m. (a) Determine the potential at x = 0. V Determine the potential at x = 3.00 m. Determine the potential at x = 6.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. V/m magnitude direction ---Select--- Determine the magnitude and direction of the electric field at x = 3.00 m. magnitude V/m direction ---Select--- O Determine the magnitude and direction of the electric field at x = 6.00 m. magnitude V/m direction --Select---arrow_forwardProblem 18: The electric potential in a certain region is given by the equation V(x,y,z) = 3αx2y3 - 2γx2y4z2 where the potential is in volts when the positions are given in meters. Part (d) The constants in this equation are α = 5.2 V/m5 and γ = 1.39 V/m8. Using this information, calculate the magnitude of the electric field at the point (x1,y1,z1) = (-5.0, 2.0, 1.5) m in units of newtons per coulomb.arrow_forward
- The electric potential at points in an xy plane is given by V= (1.70 V/m²)x² -(3.00 V/m²)y2. What are (a) the magnitude of the electric field at the point (2.90 m, 1.60 m) and (b) the angle that the field there makes with the positive x direction. (a) Number i (b) Number i Units Unitsarrow_forwardAn air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.90 mm. A 15.0-V potential difference is applied to these plates. (a) Calculate the electric field between the plates.kV/m(b) Calculate the surface charge density.nC/m2(c) Calculate the capacitance.pF(d) Calculate the charge on each plate.pCarrow_forwardAn air-filled parallel-plate capacitor has plates of area 2.00 cm2 separated by 1.80 mm. The capacitor is connected to a(n) 21.0 V battery. (a) Find the value of its capacitance. pF (b) What is the charge on the capacitor? pC (c) What is the magnitude of the uniform electric field between the plates? N/Carrow_forward
- An air-filled parallel-plate capacitor has plates of area 2.10 cm2 separated by 2.00 mm. The capacitor is connected to a(n) 11.0 V battery. (a) Find the value of its capacitance. pF (b) What is the charge on the capacitor? pC (c) What is the magnitude of the uniform electric field between the plates? N/Carrow_forwardAn air-filled parallel-plate capacitor has plates of area 2.20 cm2 separated by 2.50 mm. The capacitor is connected to a 18.0-V battery. (a) Find the value of its capacitance. pF (b) What is the charge on the capacitor? pC (c) What is the magnitude of the uniform electric field between the plates? V/marrow_forwardThe electric field in a region of space is E? = 5000x [V/m] where x is in meters. a) Graph Ex vs x over the region -1 [m] ≤ x ≤ 1 [m].b) Find an expression for the potential V at position x, let ? = 0 at the origin.c) Graph V vs x over the region -1 [m] ≤ x ≤ 1 [m]arrow_forward
- The potential in a région between x = 0 and x = 6.00 m is V = a + bx, where a = 20.0 V and b = -6.50 V/m. (a) Determine the potential at x = 0. V Determine the potential at x = 3.00 m. V Determine the potential at x = 6.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. magnitude V/m direction ---Select--- C Determine the magnitude and direction of the electric field at x = 3.00 m. magnitude V/m direction ---Select--- Determine the magnitude and direction of the electric field at x = 6.00 m. magnitude V/m direction ---Select---arrow_forwardThe drawing shows a uniform electric field that points in the negative y direction; the magnitude of the field is 6200 N/C. Determine the electric potential difference (a) VB - VA between points A and B, (b) Vc - VB between points B and C, and (c) VA - Vc between points Cand A. +y +x 10.0 cm 18.0 cm 6.0 cmarrow_forwardAn air-filled parallel-plate capacitor has plates of area 2.40 cm2 separated by 2.00 mm. The capacitor is connected to a(n) 17.0 V battery. (a) Find the value of its capacitance. pF (b) What is the charge on the capacitor? pC (c) What is the magnitude of the uniform electric field between the plates? N/Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON