Chemistry: Matter and Change
1st Edition
ISBN: 9780078746376
Author: Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher: Glencoe/McGraw-Hill School Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:The freezing point of pure benzene (CH,) is 5.50°C. The freezing point of a solution containing
5.00 g of an unknown non-dissociating solute in 444 g of benzene is 5.07°C. K, of benzene =
4.90°C/m. Show complete calculations for each question below.
1.
What is the freezing point depression for this solution?
2.
What is the molality of the solution of unknown solute in benzene?
3.
What is the molar mass of the unknown solute?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the usual solubility behavior of an ionic compound in water when the temperature is raised? Give an example of an exception to this behavior.arrow_forwardDistinguish between dispersion methods and condensation methods for preparing colloidal systems.arrow_forwardYou have read that adding a solute to a solvent can both increase the boiling point and decrease the freezing point. A friend of yours explains it to you like this: The solute and solvent can be like salt in water. The salt gets in the way of freezing in that it blocks the water molecules from joining together. The salt acts like a strong bond holding the water molecules together so that it is harder to boil. What do you say to your friend?arrow_forward
- Water at 25 C has a density of 0.997 g/cm3. Calculate the molality and molarity of pure water at this temperature.arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forwardA patient has a “cholesterol count” of 214. Like manyblood-chemistry measurements,this result is measured inunits of milligrams per deciliter (mgdL1). Determine the molar concentration of cholesterol inthis patient’s blood, taking the molar mass of cholesterolto be 386.64gmol1. Estimate the molality of cholesterol in the patient’sblood. If 214 is a typical cholesterol reading among men inthe United States, determine the volume of such bloodrequired to furnish 8.10 g of cholesterol.arrow_forward
- An unknown compound contains only carbon, hydrogen, and oxygen. Combustion analysis of the compound gives mass percents of 31.57% C and 5.30% H. The molar mass is determined by measuring the freezing-point depression of an aqueous solution. A freezing point of 5.20C is recorded for a solution made by dissolving 10.56 g of the compound in 25.0 g water. Determine the empirical formula, molar mass, and molecular formula of the compound. Assume that the compound is a nonelectrolyte.arrow_forwardBeaker A has 1.00 mol of chloroform, CHCl3, at 27C. Beaker B has 1.00 mol of carbon tetrachloride, CCl4, also at 27C. Equal masses of a nonvolatile, nonreactive solute are added to both beakers. In answering the questions below, the following data may be helpful. Write , =, or more information needed in the blanks provided. (a) Vapor pressure of solvent over beaker B vapor pressure of solvent over beaker A. (b) Boiling point of solution in beaker A boiling point of solution in beaker B. (c) Vapor pressure of pure CHCl3 vapor pressure of solvent over beaker A. (d) Vapor pressure lowering of solvent in beaker A vapor pressure lowering of solvent in beaker B. (e) Mole fraction of solute in beaker A mole fraction of solute in beaker B.arrow_forwardVapor-pressure lowering is a colligative property, as are freezing-point depression and boiling-point elevation. What is a colligative property? Why is the freezing point depressed for a solution as compared to the pure solvent? Why is the boiling point elevated for a solution as compared to the pure solvent? Explain how to calculate T for a freezing-point depression problem or a boiling-point elevation problem. Of the solvents listed in Table 10-5, which would have the largest freezing-point depression for a 0.50 molal solution? Which would have the smallest boiling-point elevation for a 0.50 molal solution? A common application of freezing-point depression and boiling-point elevation experiments is to provide a means to calculate the molar mass of a nonvolatile solute. What data are needed to calculate the molar mass of a nonvolatile solute? Explain how you would manipulate these data to calculate the molar mass of the nonvolatile solute.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax