Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the engine compressor without any work or heat interactions. Calculate the velocity at the exit of a diffuser when air at 100 kPa and 30°C enters it with a velocity of 350 m/s and the exit state is 200 kPa and 90°C [Ans. 40.7 m/s].
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- Air (MW=29 kg/kmol) at 115.00 kPa and 285.00 K is compressed steadily to 600.0 kPaThe mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60, calculate the following. What is the actual work interaction term? What is the actual exit temperature of the air?arrow_forwardWe take a 33 kg chunk of ice (Temp is 0°C) and submerge it in an isolated container. This container has 6 kg of water, and the water is 7°C. Answer the following: 1) How much ice from the block melts (in grams)? 2) What is the change in entropy for the entire system?arrow_forward12 kg of air per minute is delivered by a centrifugal air compressor It enters the compressor at a velocity of 12 m/s with a pressure of 1 bar and specific volume of 0. 5 m²/kg and leaves at a velocity of 90 m/s with a pressure of 8 bar and specific volume of 0.14 m/kg. The increase in enthalpy of air passing through the compressor is (hz-hi = 150 kJ/kg) and heat loos to the surroundings at a rate of 700 kJ/min. Assume the inlet and discharge line are at the same level. Answer the following; a. What are the main assumptions b. Calculate the power required to drive the compressor, in kW c. Calculate the ratio of inlet and outlet pipe diameter? Air out Boundary d2 Centrifugal compressor di Air inarrow_forward
- Argon is compressed steadily by a compressor from 100 kPa and 17 oC to 700 kPa and 167 oC at a rate of 3 kg/min. Assume Cp = 520.3 J/kgK, R = 208.1 J/kgK, k = 1.667. Neglecting changes in kinetic and potential energies and assuming the surrounding to be at 17 oC. Enter the minimum amount of heat transfer from the compressor in kW (correct up to one decimal place.)arrow_forwardThe inlet conditions on an air compressor are 50 kPa and 20 C. To compress the air to 400 kPa, 5 kW of energy is needed. Neglecting heat transfer and kinetic and potential energy changes, estimate the mass flow rate.arrow_forwardA turbine operates under steady flow conditions, receiving steam at the following state: pressure 1200 kPa, temperature 1880C, enthalpy 2785 kJ/kg, speed 33.3 m/s, and elevation 3 m. The steam leaves the turbine at the following pressure 20 kPa, enthalpy 2512 kJ/kg, speed 100 m/s, and elevation 0 m. Heat is lost to the surroundings at the rate of 0.29 kJ/s. If the rate of steam flow through the turbine is 0.42 kg/s, what is the power output of the turbine in kW?arrow_forward
- a tank of volume 1m3 initially contains steam at 60 bar 320 degrees celsius . stream is stream withdrawn slowly form the tank until the pressure drops to 15 bar. An electronic resistor in the tank transfers energy to the steam maintaining the temperature constant at 320degree Celsius(c) during the process. Neglecting kinetic and potential effects, determine the amount of entropy produced in kj/karrow_forwardA turbine receives steam at the following state: pressure 1200 kPag, enthalpy 2875 kJ/kg, speed 33.3 m/s and elevation 30 m. The steam leaves the turbine at the following state; pressure 20 kPag, enthalpy 2152 kJ/kg, speed 100 m/s and elevation 0 m. Heat is lost to the surroundings at the rate of 29 kJ/s. if the rate of steam flow through the turbine is 0.24 kg/s, what is the power output of the turbine in kW? Assume steady flow conditions.arrow_forwardAir (MW=29 g/mol) at 115.00 kPa and 285.00 is compressed steadily to 600.0 kPa. The mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C, and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60,calculate the following. What is the actual work interaction term in kW? What is the actual exit temperature of the air in Celcius?arrow_forward
- A tub that contains 1 kg of gasoline at 29 oC received 100 kJ of heat. Calculate the extensive entropy change of the system (tub of gasoline). Report your answer in units of kJ/K using three decimal places. You may assume the process is isobaric, and CP of gasoline is 2.22 kJ/(kg · K)arrow_forwardA certain gas that has a mass of 0.12 kg undergoes an isothermal process and occupies an initial volume of 0.02 cu. meters. The work non-flow is 5 kJ and the total change in internal entropy is 0.06 kJ per K. Use Cp = 1.05 kJ per kg K and K = 1.35. Calculate the temperature, final volume, and initial pressure. Thank youarrow_forwardA device submitted to the Pa- tent Office is shown schemati- cally in the figure to the right. Its inventor claims that it can generate 10 kW of electrical power continuously, using only 0.03 kg/s of low-pressure (2 bar) saturated steam, which exits as a mixture of liquid and gas also at 2 bar. A stream of cooling water (0.3 kg/s, liquid at 1 bar) is used in the device; the patent application lists its entrance and exit temperatures as 20 °C and 40 °C, respectively. The de- vice does not have any other heat or material exchanges with the environ- ment. You are asked to give your fully justified opinion as to whether steady-state operation of this device is (or is not) thermodynamically per- missible. If it is not possible to obtain the electrical power stated, what is the maximum power than can be generated? 0.03 kg/s sat. steam, P = 2 bar 0.3 kg/s liq. water, 0 = 20 °C Device liq. + vap. P = 2 bar 8= 40 °Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY