MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
arrow_forward
Step 1
Given the ANOVA summary table for a multiple regression model with six independent variables as
Source | Degrees of Freedom | Sum of Squares |
Regression | 6 | 240 |
Error | 26 | 190 |
Total | 32 | 430 |
Step by stepSolved in 4 steps
Knowledge Booster
Similar questions
- There are 6 parts for this Question. Please helparrow_forwardThe ANOVA summary table to the right is for a multiple regression model with six independent variables. Complete parts (a) through (e). Draw a conclusion. Choose the correct answer below. (3) Degrees of Source Freedom Regression Error Total 6 26 32 Sum of Squares 240 190 430 A. There is insufficient evidence of a significant linear relationship with at least one of the independent variables because the test statistic is less than the critical value. O B. There is sufficient evidence of a significant linear relationship with at least one of the independent variables because the p-value is less than the level of significance. C. There is sufficient evidence of a significant linear relationship with at least one of the independent variables because the test statistic is greater than the level of significance. D. There is insufficient evidence of a significant linear relationship with at least one of the independent variables because the test statistic is greater than the critical value.arrow_forwardListed below are systolic blood pressure measurements (in mm Hg) obtained from the same woman. Find the regression equation, letting the fight arm blood pressure be the predictor (x) variable. Find the best predicted systolic blood pressure in the left arm given that the systolic blood pressure in the right arm is 90 mm Hg. Use a significance level of 0.05. Right Arm Left Arm % 102 101 94 80 79 177 172 143 143 143 Click the icon to view the critical values of the Pearson correlation coefficient r The regression equation is y=+x. (Round to one decimal place as needed.). Given that the systolic blood pressure in the right arm is 90 mm Hg, the best predicted systolic blood pressure in the left arm is mm Hg. (Round to one decimal place as needed) M H N H & C Copyright ©2022 Pearson Education Inc. All rights reserved. | Terms of Use | Privacy Policy | Permissions | Contact Us | a 33 M 0 8 K Vi 1. fio 11 O More (2) { 87°F Next [ insert prt sc 7:46 8/5/2 backspacearrow_forward
- The local utility company surveys 12 randomly selected customers. For each survey participant, the company collects the following: annual electric bill (in dollars) and home size (in square feet). Output from a regression analysis appears below: Bill 13.45 + 4.39*Size Coefficients Estimate Std. Error (Intercept) 13.45 Size 4.39 0.54 0.2 We are 90% confident that the mean annual electric bill increases by between dollars and dollars for every additional square foot in home size. Round your answers to three decimal places and enter in increasing order.arrow_forwardListed below are systolic blood pressure measurements (in mm Hg) obtained from the same woman. Find the regression equation, letting the right arm blood pressure be the predictor (x) variable. Find the best predicted systolic blood pressure in the left arm given that the systolic blood pressure in the right arm is 80 mm Hg. Use a significance level of 0.05. Right Arm 100 99 93 77 77 Q Left Arm 174 168 148 148 146 Click the icon to view the critical values of the Pearson correlation coefficient r The regression equation is ŷ=+x. (Round to one decimal place as needed.) mm Hg. Given that the systolic blood pressure in the right arm is 80 mm Hg, the best predicted systolic blood pressure in the left arm is (Round to one decimal place as needed.) Data table Critical Values of the Pearson Correlation Coefficient r α = 0.05 α = 0.01 0.950 0.990 0.959 0.878 0.811 0.917 0.754 0.875 0.707 0.834 0.666 0.798 0.632 0.765 0.602 0.735 0.576 0.708 0.553 0.684 0.532 0.661 0.514 0.641 0.497 0.623 0.482…arrow_forwardThe accompanying table shows a portion of data that refers to the property taxes owed by a homeowner (in $) and the size of the home (in square feet) in an affluent suburb 30 miles outside New York City. Click here for the Excel Data File Taxes Size 21,987 2,403 17,353 2,451 29,238 2,866 a. Estimate the sample regression equation that enables us to predict property Taxes on the basis of the size of the home. (Round your answers to 2 decimal places.) Taxes = + Size. b. Interpret the slope coefficient. O As Property Taxes increase by 1 dollar, the size of the house increases by 6.71 ft. O As Size increases by 1 square foot, the property taxes are predicted to increase by $6.71. c. Predict the property Taxes for a 1,400-square-foot home. (Round coefficient estimates to at least 4 decimal places and final answer to 2 decimal places.) Taxesarrow_forward
- An automobile rental company wants to predict the yearly maintenance expense (Y) for an automobile using the number of miles driven during the year () and the age of the car (, in years) at the beginning of the year. The company has gathered the data on 10 automobiles and run a regression analysis with the results shown below:. Summary measures Multiple R 0.9689 R-Square 0.9387 Adj R-Square 0.9212 StErr of Estimate 72.218 Regression coefficients Coefficient Std Err t-value p-value Constant 33.796 48.181 0.7014 0.5057 Miles Driven 0.0549 0.0191 2.8666 0.0241 Age of car 21.467 20.573 1.0434 0.3314 Use the information above to estimate the annual maintenance expense for a 10 years old car with 60,000 miles.arrow_forwarda ift = The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, bo + b₁x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, In practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. tab ** Answer How to enter your answer (opens in new window) Step 2 of 6: Find the estimated y-Intercept. Round your answer to three decimal places. esc 1945 ! 1 q alt a Z ebook x360 ng from any angle. @ 2 W S →>> X # 3 e d C $ 4 C r f Age Bone Density 359 % 5 V t g 36 51 63 66 70 357 328 314 310 Oll A 6 b y hp h & 7 O n u j * 8 N O i m ( 9 k O 100- 4 Tables ctrl { [ Keypad Keyboard Shortcuts Previous step answers Submit Answer D + = 11 : 90 ; ? Copy Data O SEAR Dec 2 Table ] USE YOUR SMARTPHONE FOR…arrow_forwardUse the shoe print lengths and heights shown below to find the regression equation, letting shoe print lengths be the predictor (x) variable. Then find the best predicted height of a male who has a shoe print length of 28.5 cm. Would the result be helpful to police crime scene investigators in trying to describe the male? Use a significance level of α=0.05. Shoe Print (cm) 29.1 29.1 31.8 31.9 27.5 Foot Length (cm) 25.7 25.4 27.9 26.7 25.1 Height (cm) 175.4 177.8 185.2 175.4 173.2 The best predicted height is enter your response here cm. (Round to two decimal places as needed.) Would the result be helpful? A. No, because the description would be the same regardless of shoe print length. B. Yes, because the description would be based on an actual shoe print length. C. Yes, because the correlation is strong, so the predicted…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman