Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The 81-kg crate is subjected to the forces shown. If it is originally at rest, determine the distance it slides in order
to attain a speed of v = 8 m/s. The coefficient of kinetic friction between the crate and the surface is uk = 0.27.
Forces with respect to 45° and 30° are 611 N and 398 N, respectively
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A brake mechanism is used to lower body A with a constant velocity of 3.0 m/s. The coefficient of friction between the brake and drum D is 0.40. Neglect the weight of the brake. Determine the mass of body A and the power dissipated by the brake. (hint: the normal force between the brake the and disk is not 1200 N)arrow_forwardThe conveyor belt is moving downward at 5 m/s. If the coefficient of static friction between the conveyor and the 12-kg package B is uk = 0.71, determine the shortest time the belt can stop so that the package does not slide on the belt.arrow_forwardThe motor M is at rest when someone flips a switch and it starts pulling in the rope. The acceleration of the rope is uniform and such that it takes 0.50 s to achieve a retraction rate of 7.00 ft/s. Determine the tension in the rope during initial 0.50 s. The cargo C weighs 2576 lb., the weight of the ropes and pulleys is negligible, and friction in the pulleys is negligible. Note: answer to be in pounds (Ib). motor M cargo Carrow_forward
- Mary and her sister are playing with a cardboard box on the neighborhood hill. Mary climbs into the box, the total mass of the box with Mary in it is 115 kg. The box starts at rest at the beginning of the incline. The hill is at an incline of 28 degrees with respect to the horizontal.The static and kinectic friction between the box and hill is 0.4 and 0.2 respectively. Assume that Mary is now in the box, but has not started to move. a. What is the gravitational force acting on the box and child system?b. What is the magnitude of the normal force acting on the box?c. What is the reaction force associated with the normal force found in the previous step.arrow_forwardThe 18-kg block A slides on the surface for which μk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 11-kg block B. The unstretched spring has a stiffness k = 1200 N/m . Take e = 0.6. The coefficient of friction is the same for both blocks.arrow_forwardQ20. The 74-kg man pushes on the 134-kg crate with a horizontal force F. If the coefficient of kinetic friction between the crate and the surface is k = 0.12, and the coefficient of static friction between the man's shoes and the surface is με = 0.85, what is the greatest acceleration (in m/s²) the man can give the crate? Hint, this is when the man himself is on the verge of slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². Answer: ▬▬▬▬▬▬▬▬▬▬arrow_forward
- Assume that a driver (car modeled as a point mass) is negotiating a circular turn with a radius of 160 ft. The car and driver have a mass of 3800 lb and the coefficient of friction between the car and road is µ1 = 0.85. What is the maximum constant speed for which the car can travel at the given radius? r= 160 ftarrow_forwardThe crate, which has a mass of 245 kg is subjected to the action of the two forces. If it is originally at rest determine the distance it slides in order to attain a speed of 12 m/s. The coefficient of kinetic friction between the crate and the surface is 0.18 800 N 30° 4 1000 Narrow_forwardThe 925-kg motorized unit A is designed to raise and lower the 615-kg bucket B of concrete. Determine the average force R which supports unit A during the 5.9 seconds required to slow the descent of the bucket from 4.6 m/s to 0.9 m/s. Analyze the entire system as a unit without finding the tension in the cable. Answer: R = i kNarrow_forward
- The force P is applied to the 50-kg block when it is at rest. Determine the magnitude and direction of the friction force exerted by the surface on the block if (a) P = 0, (b) P = 226 N, and (c) P = 353 N. (d) What value of P is required to initiate motion up the incline? The static and kinetic coefficients of friction between the block and the incline are μs = 0.30 and μk = 0.27, respectively. The friction force is positive if up the incline, negative if down the incline.arrow_forwardBlock A has a mass of 10 kg and bloc B has a mass of 2 Kg and are kept at rest. The 2 blocs are comected by a cord passing by a wheel at the top of the incline. The surface of the incline has a friction coefficient -0.12. The angle of the incline is 0= 30°. A is at 6 meters above the incline floor. After being released from rest, the bloc A will move down. Determine the total energy of the bloc A after it has moved down the incline by 4 meters.. Calculate its velocity. 6 m Barrow_forwardThe 10-lb block has a speed of 4 ft/s when the force of F = (8t²) lb is applied. The coefficient of kinetic friction at the surface is μ = 0.2. (Figure 1) Figure F = (81²) lb v = 4 ft/s 1 of 1 > Part A Determine the speed of the block when it moves s = 30 ft. Express your answer to three significant figures and include the appropriate units. V = Submit 0 O μA Value Provide Feedback Request Answer Units ? Next >arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY