College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 15.00-g bullet moving with an initial
speed of 300.0 m/s is fired into and passes through a
3.00-kg block, as shown in the figure. The block,
initially at rest on a frictionless horizontal surface, is
connected to a spring with a spring constant of 1000.0
N/m.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spring with a spring constant of 369 N/m is initially compressed by a distance of 0.064 m from its equilibrium position. A mass of 0.031 kg is then held against the compressed spring and released from rest while upon a horizontal, frictionless surface. Assuming that the spring then pushes the mass across the surface, with speed does the mass leave the spring? Assume proper SI Units.arrow_forwardA 5.00-gm projectile moving with an initial speed of 400. m/s is fired into and passes through a 1.00-kg block as shown. The block, initially stationary on a frictionless horizontal surface, is connected to a spring with a spring constant k = 900. N/m, If the block moves 5.00 cm to the right after impact find (a) the speed at which the projectile emerges from the block and (b) the energy lost in the collision. HINT: this is not an elastic or inelastic collision, but what concept can you use?arrow_forwardA 5.00-g bullet moving with an initial speed of vi = 390 m/s is fired into and passes through a 1.00-kg block as shown in the figure below. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 860 N/m. The block moves d = 5.60 cm to the right after impact before being brought to rest by the spring a) Find the speed at which the bullet emerges from the block.=----m/s b) Find the amount of initial kinetic energy of the bullet that is converted into internal energy in bullet–block system during the collision. =-------Jarrow_forward
- A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 23.0 N/m. The block rests on a frictionless surface. A 5.90×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.96 m/s and sticking.How far does the putty-block system compress the spring?arrow_forwardA bullet with a mass m, = 12.7 g is fired into a block of wood at velocity v, 253 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass mw of the wooden block. mw = kgarrow_forwardA 0.650 kgkg block is attached to a spring with spring constant 14.0 N/mN/m. While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/scm/s. What is the block's speed at the point where x=0.20 A?arrow_forward
- A 2.00-kg pendulum ball is attached to a light-uniform cable of length 1.20 m that is hanging from the ceiling at an angle of 50.00 to the vertical. When the pendulum ball is released from the rest position, it swings to the very bottom of the motion where it collides head-on with a 1.40-kg block that is initially at rest on a level surface. lí the pendulum ball recoils at 1.50 m/s, what is the speed of the block after the collision? e = 50° 1.2 m 2.0 kg 1.4 kg a. 5.98 m/s b. 3.88 m/s c. 6.29 m/s d. 4.75 m/s e. 3.03 m/sarrow_forwardProblem 16: A massless spring (with force constant k = 182 N/m) connects a wall and a block of wood. The system is initially at rest, with the spring unstretched. The block has mass M = 50.1 g and is able to move without friction on a table. A gun is positioned to fire a bullet of mass m = 6.6 g into the block along the spring axis. After the gun is fired, the bullet gets embedded in the block, and the spring is compressed a maximum distance d = 0.97 m. Part (b) In meters per second, what is the speed of the bullet v before it enters the block? Part (c) What is the frequency f (in Hz) of the resulting periodic motion of the block/bullet and spring system?arrow_forwardA spring with a spring constant 247 N/m is initially compressed by a distance of 0.044 m from its equilibrium position. A mass of 0.059 kg is then held against the compressed spring and released from rest while upon a horizontal, frictionless surface. Assuming that the spring then pushes the mass across the surface, with speed does the mass leave the spring? Assume proper SI Units.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON