Show that for a "broken in" clutch, the maximum torque transfer through the clutch occurs when the inner radius of the clutch "r" is equal to the outer radius of the clutch "ro" divided by the "√3" (i.e. r = 12). Start with equation 18.6 (i.e. T = (л)(Pmax)(µ)(N)(ro²ri — r₁³)). Treat "r" as the independent variable, "T" as the dependent variable, and the remaining parameters as "constants" (Note: Essentially, the torque "T" is a cubic function (3rd degree polynomial) of the inner radius "r"). "Maximize" this "cubic function" over a realistic domain using differential calculus. Be sure to show the “critical point" r₁ = 1/3 corresponds to a "relative maximum" (Hint: This can be done by using either the 1st derivative test or the 2nd derivative test).

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter10: Rotational Motion
Section: Chapter Questions
Problem 78P: Review. A string is wound around a uniform disk of radius R and mass M. The disk is released from...
icon
Related questions
icon
Concept explainers
Topic Video
Question

Solve and show solution for answer given

 

-
Show that for a "broken in" clutch, the maximum torque transfer through the clutch occurs
when the inner radius of the clutch "r" is equal to the outer radius of the clutch "ro" divided
by the "√3" (i.e. r₁ = 12). Start with equation 18.6 (i.e. T = (π)(Pmax)(µ)(N)(ro²ri — r₁³)). Treat
"r" as the independent variable, "T" as the dependent variable, and the remaining parameters
as "constants" (Note: Essentially, the torque "T" is a cubic function (3rd degree polynomial) of
the inner radius "r"). "Maximize" this "cubic function" over a realistic domain using
differential calculus. Be sure to show the "critical point" r₁ = 1/3 corresponds to a "relative
maximum" (Hint: This can be done by using either the 1st derivative test or the 2nd derivative
test).
Transcribed Image Text:- Show that for a "broken in" clutch, the maximum torque transfer through the clutch occurs when the inner radius of the clutch "r" is equal to the outer radius of the clutch "ro" divided by the "√3" (i.e. r₁ = 12). Start with equation 18.6 (i.e. T = (π)(Pmax)(µ)(N)(ro²ri — r₁³)). Treat "r" as the independent variable, "T" as the dependent variable, and the remaining parameters as "constants" (Note: Essentially, the torque "T" is a cubic function (3rd degree polynomial) of the inner radius "r"). "Maximize" this "cubic function" over a realistic domain using differential calculus. Be sure to show the "critical point" r₁ = 1/3 corresponds to a "relative maximum" (Hint: This can be done by using either the 1st derivative test or the 2nd derivative test).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning