Question 5: A copper bar 35 cm long, with square cross-section 2 cm x 2 cm is fitted with a resistive heater at one end, and a large heat sink at the other. The bar itself is ideally thermally lagged. (i) (ii) Sketch how you think the two thermometers would behave when the heater is switched on; (ii) Calculate the thermal conductivity if in the steady-state, T1=64.7 deg C and T2=40.0 deg C. Hint: rate of flow of heat = k*A*AT/x V=6 V, I=2.5A heater T1 25 cm T2 Heat sink

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter1: Basic Modes Of Heat Transfer
Section: Chapter Questions
Problem 1.68P
icon
Related questions
Question
Question 5: A copper bar 35 cm long, with square cross-section 2 cm x 2 cm is fitted with a
resistive heater at one end, and a large heat sink at the other. The bar itself is ideally thermally
lagged.
(i)
(ii)
Sketch how you think the two thermometers would behave when the heater is switched
on;
(ii) Calculate the thermal conductivity if in the steady-state, T1=64.7 deg C and T2=40.0
deg C.
Hint: rate of flow of heat = k*A*AT/X
V=6 V,
I=2.5A
heater
T1
25 cm
T2
Heat
sink
Transcribed Image Text:Question 5: A copper bar 35 cm long, with square cross-section 2 cm x 2 cm is fitted with a resistive heater at one end, and a large heat sink at the other. The bar itself is ideally thermally lagged. (i) (ii) Sketch how you think the two thermometers would behave when the heater is switched on; (ii) Calculate the thermal conductivity if in the steady-state, T1=64.7 deg C and T2=40.0 deg C. Hint: rate of flow of heat = k*A*AT/X V=6 V, I=2.5A heater T1 25 cm T2 Heat sink
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning