PROBLEM 8. The total weight of space shuttle including its payload mass and the empty external tank, and its empty two solid rocket boosters is mo = 428,100 lb. It is known that the external tank and the two solid rocket boosters initially holds m,(0) = 3,728,875 lb of fuel (that is the total weight of solid fuel plus liquid oxygen and hydrogen). The shuttle consumes its liquid and solid fuels at a constant rate of A, = 14,300 lb/s. Also, it is known that the shuttle thrust force is F, = 400,000 lb. (a) Use the Newton's 2nd law below to find the second order differential equation that describes the vertical position y of the space shuttle as a function of time. The shuttle is launched vertically upward from the ground as shown below, with the positive direction upward and the air resistance is ignored. The Earth's gravitational acceleration on its surface is g = 32.2 ft/s² and its radius is R = 4000 miles. Frotat (t) = [m(t). v] Fehrust Where, - Frotat(t) is the net force acting on the space shuttle that is the difference between thrust force F, and gravitational force Fg. - m(t) denotes the total mass of the rocket at time t given by m(t) = m, + m;(t) - m, is the constant mass of the shuttle including the mass of payload, the empty external fuel tank and rocket boosters. - m, (t) is the variable amount of liquid and solid fuels given by m, (t) = -Ast + m, (0) Fgravity F9 center of Earth
PROBLEM 8. The total weight of space shuttle including its payload mass and the empty external tank, and its empty two solid rocket boosters is mo = 428,100 lb. It is known that the external tank and the two solid rocket boosters initially holds m,(0) = 3,728,875 lb of fuel (that is the total weight of solid fuel plus liquid oxygen and hydrogen). The shuttle consumes its liquid and solid fuels at a constant rate of A, = 14,300 lb/s. Also, it is known that the shuttle thrust force is F, = 400,000 lb. (a) Use the Newton's 2nd law below to find the second order differential equation that describes the vertical position y of the space shuttle as a function of time. The shuttle is launched vertically upward from the ground as shown below, with the positive direction upward and the air resistance is ignored. The Earth's gravitational acceleration on its surface is g = 32.2 ft/s² and its radius is R = 4000 miles. Frotat (t) = [m(t). v] Fehrust Where, - Frotat(t) is the net force acting on the space shuttle that is the difference between thrust force F, and gravitational force Fg. - m(t) denotes the total mass of the rocket at time t given by m(t) = m, + m;(t) - m, is the constant mass of the shuttle including the mass of payload, the empty external fuel tank and rocket boosters. - m, (t) is the variable amount of liquid and solid fuels given by m, (t) = -Ast + m, (0) Fgravity F9 center of Earth
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY