
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Problem 2 (40 Points)
A particle of mass m is embedded at a distance a from the center of a massless circular disk of
radius r. The disk rolls without slipping down a plane inclined at an angle a with the horizontal.
A horizontal force of Ễ = −Fxî + Fyĵ resists motion of the disk down the plane by pushing on
the disk at the axle that runs through the center of the disk.
a) Find the kinetic energy T. (10 points)
b) Find the potential energy V. (10 points)
c) Write a position vector to the axle at the center of the wheel in terms of x and y. (10
points)
d) Using virtual work, find the applied force Q₁ that would go in Lagrange's Equations. DO
NOT WRITE OUT OR SOLVE LAGRANGES'S EQUATIONS. (10 points)
x
r
m
e
10
g
F
α
HINTS
1) Consider using the STATIONARY red xy frame a reference frame from which to draw
vectors
2) The red xy system DOES NOT move. It is stationary.
3) Consider that the disk rolls a distance of re down the ramp
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 3 images

Knowledge Booster
Similar questions
- 4. A bullet of mass m = 2 grams is moving horizontally with a speed of 500 m/s. The bullet strikes and becomes embedded in the edge of a solid disk of mass M = 3.2 kg and radius R = 0.5 m. The disk is free to rotate about its axis and it initially at rest. Compute the angular velocity (rad/s) of the disc immediately after the bullet is embedded. A R 500 m/s ANS. 1.2 rad/sarrow_forward2. Angular momentum conservation D h v' G h' A ball with mass m hits a racket with mass m, at a speed of v, and is then bounded back at a speed of v'. If the momentum of inertia of the racket about the center of mass G is I, find the angular speed of the racket about G after the hit.arrow_forward5. The pendulum shown below consists of a 30 kg point mass at the end of a uniform bar with mass m = 45 kg and length L = 2 m. The pendulum moves in a vertical plane while acted upon by a 500 N-m torque as shown. If the pendulum's angular velocity is 4 rad/s when 0 = 90 degrees, how much force is exerted on the pendulum by the pin at point A when 0 = 330 degrees? 500 N-m B F = 2470 N Z -52 degreesarrow_forward
- 4. A uniform rod is free to rotate about Point A. The tram that is holding A is accelerating to the left at 4 m/s². Neglect air resistance. When the rod is in equilibrium, at what angle, 0, will the rod be oriented relative to vertical? a = 4 m/s² A 0 = ? Rod g m = 6 kg L = 0.3 marrow_forwardPlease help This problem involves conservation of energy of rigid bodies. Thank you.arrow_forward1. (bold type indicates a vector) An object of mass m = 10 kg may rotate in a vertical plane about the fixed point P under the action of gravity. The distance d from the point P to the center of mass C is d = 0.5 m. The moment of inertia Ie about the center of mass C is unknown. The object starts at rest in the position shown and is then released. At the instant of release the acceleration of the center of mass is measured to be a, = (-5 m/sec²)j (i.e., downward). Use the given information to determine the moment of inertià I, about the center of mass. Use g = 10 m/sec?. gravity w go P (f ixed)arrow_forward
- The 2-mass system shown below depicts a disk which rotates about its center and has rotational moment of inertia Jo and radius r. The angular displacement of the disk is given by 0. The spring with constant k₂ is attached to the disk at a distance from the center. The mass m has linear displacement & and is subject to an external force u. When the system is at equilibrium, the spring forces due to k₁ and k₂ are zero. Neglect gravity and aerodynamic drag in this problem. You may assume the small angle approximation which implies (i) that the springs and dampers remain in their horizontal / vertical configurations and (ii) that the linear displacement d of a point on the edge of the disk can be approximated by d≈re. Ө K2 www m 4 Cz 777777 Jo Make the following assumptions when analyzing the forces and torques: тв 2 0>0, 0>0, x> > 0, >0 Derive the differential equations of motion for this dynamic system. Start by sketching LARGE and carefully drawn free-body-diagrams for the disk and the…arrow_forwardHW1 Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are 12 kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 40 mm, 50 mm, 60 mm and 30 mm. The angular position of the masses A, B, C and D are 60°, 90° and 70° from the mass A. Find the magnitude and position of the balancing mass at a radius of 100 mm.arrow_forwardA spring with a spring constant of 1200lbf/ft is attached to block with a mass of 96.6lbm horizontally. It was initially displaced 3 inches to the left of the equilibrium position and released at 12in/s going to the right. Determine also the c) acceleration 2 seconds after the push in ft/s2 *arrow_forward
- 2. Figure 2 shows a quick return mechanism. The ram at C has a mass of 50kg and is accelerating to the right at 10 m/s². In addition there is a force resisting the motion of the ram of 1500N. Determine the magnitude and direction of the forces: (a) acting between the ram and guide (b) at the pin joint B (c) (d) (e) Find the torque about O. at the pin joint Q. at the slider A. BL 45° 71° 18.5° Figure 2. Quick Return Mechanism OA = 0.075m AQ = 0.162m BQ = 0.1m BC = 0.3marrow_forwardQuestion 1. A tube rotates in the horizontal ry plane with a constant angular velocity w about the z-axis. A particle of mass m is released from a radial distance R when the tube is in the position shown. This problem is based on problem 3.2 in the text. R m 2R Figure 1 x a) Draw a free body diagram of the particle if the tube is frictionless. b) Draw a free body diagram of the particle if the coefficient of friction between the sides of the tube and the particle is = k = p. c) For the case where the tube is frictionless, what is the radial speed at which the particle leaves the tube? d) For the case where there is friction, derive a differential equation that would allow you to solve for the radius of the particle as a function of time. I'm only looking for the differential equation. DO NOT solve it. 1 e) If there is no friction, what is the angle of the tube when the particle exits? • Hint: You may need to solve a differential equation for the last part. The "potentially useful…arrow_forwardIf u dont know how to solve then suggest to other Subjects Experts if u know which expert will do Best thanks only human expert solvearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY