Problem 05.089 - Heat exchanger Hot exhaust gases of an internal combustion engine are to be used to produce saturated water vapor at 2 MPa pressure. The exhaust gases enter the heat exchanger at 400°C at a rate of 32 kg/min while water enters at 15°C. The heat exchanger is not well insulated, and it is estimated that 10 percent of heat given up by the exhaust gases is lost to the surroundings. If the mass flow rate of the exhaust gases is 15 times that of the water, determine the temperature of the exhaust gases at the heat exchanger exit and the rate of heat transfer to the water. Use the constant specific heat properties of air for the exhaust gases. The constant pressure specific heat of the exhaust gases is taken to be cp 1.045 kJ/kg "C. The inlet and exit enthalpies of water are 62.98 kJ/kg and 2798.3 kJ/kg. = Exhaust gases 400°C T 2 MPa sat. vap. Heat exchanger Water 15°C The temperature of the exhaust gases is The rate of heat transfer is kW. °C.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Problem 05.089 - Heat exchanger
Hot exhaust gases of an internal combustion engine are to be used to produce saturated water vapor at 2 MPa pressure. The exhaust
gases enter the heat exchanger at 400°C at a rate of 32 kg/min while water enters at 15°C. The heat exchanger is not well insulated,
and it is estimated that 10 percent of heat given up by the exhaust gases is lost to the surroundings. If the mass flow rate of the
exhaust gases is 15 times that of the water, determine the temperature of the exhaust gases at the heat exchanger exit and the rate of
heat transfer to the water. Use the constant specific heat properties of air for the exhaust gases. The constant pressure specific heat of
the exhaust gases is taken to be cp 1.045 kJ/kg "C. The inlet and exit enthalpies of water are 62.98 kJ/kg and 2798.3 kJ/kg.
=
Exhaust
gases
400°C
T
2 MPa
sat. vap.
Heat
exchanger
Water
15°C
The temperature of the exhaust gases is
The rate of heat transfer is
kW.
°C.
Transcribed Image Text:Problem 05.089 - Heat exchanger Hot exhaust gases of an internal combustion engine are to be used to produce saturated water vapor at 2 MPa pressure. The exhaust gases enter the heat exchanger at 400°C at a rate of 32 kg/min while water enters at 15°C. The heat exchanger is not well insulated, and it is estimated that 10 percent of heat given up by the exhaust gases is lost to the surroundings. If the mass flow rate of the exhaust gases is 15 times that of the water, determine the temperature of the exhaust gases at the heat exchanger exit and the rate of heat transfer to the water. Use the constant specific heat properties of air for the exhaust gases. The constant pressure specific heat of the exhaust gases is taken to be cp 1.045 kJ/kg "C. The inlet and exit enthalpies of water are 62.98 kJ/kg and 2798.3 kJ/kg. = Exhaust gases 400°C T 2 MPa sat. vap. Heat exchanger Water 15°C The temperature of the exhaust gases is The rate of heat transfer is kW. °C.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY