Bartleby Related Questions Icon

Related questions

Question
100%
Please complete table by each gram (Linear Acceleration, Angular acceleration, Tension, Torque) with given data and formulas on the papers. There isn’t anything else that goes with this except for the stuff in the pictures
### Physics Experiment Data

This table presents various measurements relevant to the experimental setup involving a shaft, threaded component, and other related masses. Here's the detailed breakdown:

- **Mass of Shaft:**
  - **Mass:** 0.3924 kg

- **Radius of Shaft:**
  - **Radius:** 0.00925 m

- **Mass of Threaded:**
  - **Mass:** 0.0628 kg

- **Length of Threaded:**
  - **Length:** 0.34 m

- **Mass of 0.1-kg Mass:**
  - **Mass:** 0.1 kg

- **Distance \( d \) from Center of Shaft to Center of Mass:**
  - **Distance:** 16.25 cm or 1.625 m

- **Mass of 4 Wing Nuts:**
  - **Mass:** 0.06234 kg

- **Distance \( d \) from:**
  - **Distance:** 16.25 cm or 1.625 m

Note: Ensure accuracy while conducting experiments with associated equipment, considering these measurements for proper calculation and analysis.
expand button
Transcribed Image Text:### Physics Experiment Data This table presents various measurements relevant to the experimental setup involving a shaft, threaded component, and other related masses. Here's the detailed breakdown: - **Mass of Shaft:** - **Mass:** 0.3924 kg - **Radius of Shaft:** - **Radius:** 0.00925 m - **Mass of Threaded:** - **Mass:** 0.0628 kg - **Length of Threaded:** - **Length:** 0.34 m - **Mass of 0.1-kg Mass:** - **Mass:** 0.1 kg - **Distance \( d \) from Center of Shaft to Center of Mass:** - **Distance:** 16.25 cm or 1.625 m - **Mass of 4 Wing Nuts:** - **Mass:** 0.06234 kg - **Distance \( d \) from:** - **Distance:** 16.25 cm or 1.625 m Note: Ensure accuracy while conducting experiments with associated equipment, considering these measurements for proper calculation and analysis.
# Educational Website Content: Physics Lab Sheet

## PHY 1152 – Principles of Physics Laboratory

### Rotational Inertia of Wing Nuts

The equation for the rotational inertia of the 4 wing nuts is given by:

\[ I_{\text{wingnuts}} = m_{\text{wingnuts}} \cdot d^2 \]

**Variables:**
- \( M = \text{mass} \)
- \( R = \text{radius} \)
- \( m_{\text{t}} = \text{mass of thread} \)
- \( L = \text{length} \)
- \( d = \text{distance from object to center} \)
- \( H = \text{height of mass to floor} \)

### Calculation Table

The following table summarizes the calculations for each moment of inertia:

| Component     | Mass (kg) | Inertia \( (kg \cdot m^2) \) |
|---------------|-----------|-----------------------------|
| \( I_{\text{shaft}} \)         |  | 0.00001678           |
| \( I_{\text{thread rod}} \) |  | 0.000378012          |
| 0.1 kg mass   |  | 0.00528125           |
| 4 wing nuts   |  | 0.0006166            |
| Total         |  | 0.0094605            |

### Data Collection and Analysis

For different weights, the experiments yielded the following results:

| Mass \( m \) (kg) | Time 1 (s) | Time 2 (s) | Average Time \( t \) (s) | Linear Acceleration \( a \) \( (m/s^2) \) | Angular Acceleration \( (\text{rad/s}^2) \) | Tension \( T \) (N) | Torque \( (\text{m} \cdot \text{N}) \) |
|------------------|------------|------------|--------------------------|-------------------------------------------|----------------------------------------------|-------------------|------------------------------------|
| 0.050 (50 grams) | 25.49      | 25.87      | 37.88                    |                                           |                                              |                   |                                    |
| 0.100 (100 grams)| 17.94      | 17.39      | 25.75                    |                                           |                                              |                   |
expand button
Transcribed Image Text:# Educational Website Content: Physics Lab Sheet ## PHY 1152 – Principles of Physics Laboratory ### Rotational Inertia of Wing Nuts The equation for the rotational inertia of the 4 wing nuts is given by: \[ I_{\text{wingnuts}} = m_{\text{wingnuts}} \cdot d^2 \] **Variables:** - \( M = \text{mass} \) - \( R = \text{radius} \) - \( m_{\text{t}} = \text{mass of thread} \) - \( L = \text{length} \) - \( d = \text{distance from object to center} \) - \( H = \text{height of mass to floor} \) ### Calculation Table The following table summarizes the calculations for each moment of inertia: | Component | Mass (kg) | Inertia \( (kg \cdot m^2) \) | |---------------|-----------|-----------------------------| | \( I_{\text{shaft}} \) | | 0.00001678 | | \( I_{\text{thread rod}} \) | | 0.000378012 | | 0.1 kg mass | | 0.00528125 | | 4 wing nuts | | 0.0006166 | | Total | | 0.0094605 | ### Data Collection and Analysis For different weights, the experiments yielded the following results: | Mass \( m \) (kg) | Time 1 (s) | Time 2 (s) | Average Time \( t \) (s) | Linear Acceleration \( a \) \( (m/s^2) \) | Angular Acceleration \( (\text{rad/s}^2) \) | Tension \( T \) (N) | Torque \( (\text{m} \cdot \text{N}) \) | |------------------|------------|------------|--------------------------|-------------------------------------------|----------------------------------------------|-------------------|------------------------------------| | 0.050 (50 grams) | 25.49 | 25.87 | 37.88 | | | | | | 0.100 (100 grams)| 17.94 | 17.39 | 25.75 | | | |
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS