Nuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2) fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of 4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat uniformly throughout their volume due to nuclear fission, with a power density a (i.e., the heat power produced per unit volume of the pellet) that depends on their 235U enrichment. This heats up the water in the reactor to produce steam to drive the turbine. Assuming that the rim of the fuel pellet is maintained at a constant temperature Trim due to water cooling, show that the steady-state temperature profile T(r), where r is the radial distance from the centre of the pellet and fuel rod, 4. P(R? -r²; is given by: T(r) = Tim + 4k where k is the thermal conductivity of the pellet and R is its radius. partial stacked column of fuel pellets in rod

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Nuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2)
fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of
4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat
uniformly throughout their volume due to nuclear fission, with a power density a
(i.e., the heat power produced per unit volume of the pellet) that depends on their
235U enrichment. This heats up the water in the reactor to produce steam to drive
the turbine. Assuming that the rim of the fuel pellet is maintained at a constant
temperature Trim due to water cooling, show that the steady-state temperature
profile T(r), where r is the radial distance from the centre of the pellet and fuel rod,
4.
P(R? -r²;
is given by: T(r) = Tim +
4k
where k is the thermal conductivity of the
pellet and R is its radius.
partial stacked column
of fuel pellets in rod
Transcribed Image Text:Nuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2) fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of 4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat uniformly throughout their volume due to nuclear fission, with a power density a (i.e., the heat power produced per unit volume of the pellet) that depends on their 235U enrichment. This heats up the water in the reactor to produce steam to drive the turbine. Assuming that the rim of the fuel pellet is maintained at a constant temperature Trim due to water cooling, show that the steady-state temperature profile T(r), where r is the radial distance from the centre of the pellet and fuel rod, 4. P(R? -r²; is given by: T(r) = Tim + 4k where k is the thermal conductivity of the pellet and R is its radius. partial stacked column of fuel pellets in rod
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY