College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
On one side of a diverging lens of focal length 29.6 cm, you position an object of height 3.43 cm somewhere along the principal axis. The resultant image has a height of 2.40 cm. How far from the lens is the object located?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. Find the location, orientation, and size of the final image.arrow_forwardOn one side of a diverging lens of focal length 59.0 cm, you position an object of height 3.92 cm somewhere along the principal axis. The resultant image has a height of 2.74 cm. How far from the lens is the object located? 17.8 cm 25.4 cm 43.2 cm 33.0 cmarrow_forwardOn one side of a converging lens of focal length 21.3 cm, you position an object of height 3.27 cm somewhere along the principal axis. The resultant image has a height of 11.77 cm. How far from the lens is the object located? 27.2 cm 10.9 cm 38.1 cm 21.8 cmarrow_forward
- Two lenses are separated by 50 cm. Lens 1 is convex and has a radius of curvature of magnitude 30 cm. Lens 2 is concave and has a radius of curvature of magnitude 40 cm and is located to the right of Lens 1. An object is located 20 cm to left of lens 1. Find the location of the final image of the object. What is the magnification of the final image?arrow_forwardA system of two converging lenses forms an image of an arrow as shown. The first lens is located at x = 0 and has a focal length of f₁ = 8.8 cm. The second lens is located at x = x2 = 58.13 cm and has a focal length of f2 = 21 cm. The tip of the object arrow is located at (x,y) = (xo,Y)= (-12.3 cm, 6.9 cm). AY (X,Y) 1) What is x₁, the x-coordinate of image of the arrow formed by the first lens? cm Submit 2) What is y₁, the y-coordinate of the image of the tip of the arrow formed by the first lens? cm Submit Virtual and Inverted Virtual and Upright Submit X₂ cm Submit X 3) What is x3, the x co-ordinate of image of the arrow formed by the two lens system? cm Submit 5) What is the nature of the final image relative to the object? Real and Inverted Real and Upright ++++ 4) What is y3, the y-coordinate of the image of the tip of the arrow formed by the two lens system? + 6) Which of the following changes to the locations of the lenses would result in a virtual and inverted image of the…arrow_forwardAn object is 60.0 cm from a converging lens and the object is 1.00 cm tall. What is the poisition and height of the image if the focal length of the lens is 25.0 cm? The object is at 0.0233 cm and the height of the image will be 0.715 cm upright. The object is at 0.0233 cm and the height of the image will be 0.000388 cm inverted. The object is at 42.9 cm and the height of the image will be 0.000388 cm upright. The object is at 42.9 cm and the height of the image will be 0.715 cm inverted.arrow_forward
- Is the final image real or virtual? Is the final image upright or inverted?arrow_forwardThe lens-maker’s equation for a lens with index n1 immersed in a medium with index n2 takes the form A thin diverging glass (index = 1.50) lens with R1 = −3.00 m and R2 = −6.00 m is surrounded by air. An arrow is placed 10.0 m to the left of the lens. (a) Determine the position of the image. Repeat part (a) with the arrow and lens immersed in (b) water (index = 1.33) (c) a medium with an index of refraction of 2.00. (d) How can a lens that is diverging in air be changed into a converging lens?arrow_forwardA 4 cm tall light bulb is placed a distance of 35.5 cm from a diverging lens whose focal length magnitude is 12.2 cm. Determine the image distance from the lens, the image height, and the magnification. Put into words what your calculations physically represent about the image.arrow_forward
- A converging lens of focal length f=2 cm is used to focus the image of an object onto a screen. The object and screen are separated by 15 cm. The lens is placed between the object and the screen, at a distance from the screen such that the image of the object is focused into the screen. At what distance from the screen must the lens be placed in order to have an image magnification < 1? Provide your answer to two significant figures. distance = cm.arrow_forwardA system of two lenses forms an image of an arrow at x = x3 = 57.4 cm. The first lens is a diverging lens located at x = 0 and has a focal length of magnitude f₁ = 11.5 cm. The second lens is located at x = x₂ = 25.4 cm and has an unknown focal length. The tip of the object arrow is located at (x,y) = (xo, Yo) = (-36 cm, 20.6 cm). (x,y) 1) What is x₁, the x-coordinate of image of the arrow formed by the first lens? cm Submit 2) What is y₁, the y-coordinate of the image of the tip of the arrow formed by the first lens? cm Submit X₂ Real and Inverted Real and Upright Virtual and Inverted Virtual and Upright cm Submit (+) 3) What is f2, the focal length of the second lens. If the lens is a converging lens, f2 is positive. If the lens is a diverging lens, f2 is negative. cm Submit + 4) What is y3, the y-coordinate of the image of the tip of the arrow formed by the two lens system? (+ 5) The positions of the two lenses are now interchnaged (i.e., the second lens is moved to x = 0 and the…arrow_forwardOn one side of a converging lens of focal length 22.4 cm, you position an object of height 2.39 cm somewhere along the principal axis. The resultant image has a height of 11.95 cm. How far from the lens is the object located?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON