College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used in combination. The converging lens has a focal length of 15.3 cm. The diverging lens is of unknown focal length. An object is placed 19.5 cm in front of the converging lens; the final image is virtual and is formed 12.0 cm in front of the diverging lens. What is the focal length of the diverging lens?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- = A doublet lens consists of two lenses in effective contact. The front lens is biconvex with fi +37.5 cm, and the second is biconcave with f2 = -150 cm. An object of height 2 cm is placed at 80 cm to the left of the combined lens. Calculate the position of the image, and the image height.arrow_forwardOn one side of a diverging lens of focal length 59.0 cm, you position an object of height 3.92 cm somewhere along the principal axis. The resultant image has a height of 2.74 cm. How far from the lens is the object located? 17.8 cm 25.4 cm 43.2 cm 33.0 cmarrow_forwardA converging lens is placed 36.0 cm to the right of a diverging lens of focal length 7.0 cm. A beam of parallel light enters the diverging lens from the left, and the beam is again parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. f = _____ cmarrow_forward
- You use a lens to form an image. The object is 50 cm from the lens and the image is formed at a position of -14 cm. What is the focal length of your lens? f = cm What is the magnification of the lens? m = Is the image formed real or virtual? --- Is the image upright or inverted? Are you using a converging lens or a diverging lens?arrow_forwardA 1.00-cm-high object is placed 4.30 cm to the left of a converging lens of focal length 8.45 cm. A diverging lens of focal length -16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position height cm ---Select--- cmarrow_forwardThe distance between the eyepiece and the objective lens in a certain compound microscope is 10.4 cm. The focal length of the objective is 0.430 cm, and that of the eyepiece is 1.40 cm. Find the overall magnification of the microscope. (The near point of the eye is 25 cm. Assume that the object is placed at the focal point of the objective lens, and one places the eyepiece at the near point of the eye.)arrow_forward
- For safety reasons, you install a rear-window lens with a -0.299 m focal length in your van. Before putting the van in reverse, you look through the lens and see the image of a person who appears to be 0.339 m tall and 0.243 m behind the van. Determine the following. (a) actual distance of the person behind the van m (b) height of the personarrow_forwardAn object is 6 cm in front of a converging lens with a focal length of 10cm. Draw a ray diagram (to scale with a ruler) to find the location of the image. Is the image upright or inverted, and Is the image real or virtual? Then I want to use the thin lens formula to find the image distance and the magnification. I got stuck in the middle of this problem and am confused. Thank you for the help!arrow_forwardA converging lens of focal length f=2 cm is used to focus the image of an object onto a screen. The object and screen are separated by 15 cm. The lens is placed between the object and the screen, at a distance from the screen such that the image of the object is focused into the screen. At what distance from the screen must the lens be placed in order to have an image magnification < 1? Provide your answer to two significant figures. distance = cm.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON