import java.util.*; // Iterator, Comparator public class BinarySearchTree implements BSTInterface { protected BSTNode root; // reference to the root of this BST protected Comparator comp; // used for all comparisons protected boolean found; // used by remove public BinarySearchTree() // Precondition: T implements Comparable // Creates an empty BST object - uses the natural order of elements. { root = null; comp = new Comparator() { public int compare(T element1, T element2) { return ((Comparable)element1).compareTo(element2); } }; } public BinarySearchTree(Comparator comp) // Creates an empty BST object - uses Comparator comp for order // of elements. { root = null; this.comp = comp; } public boolean isFull() // Returns false; this link-based BST is never full. { return false; } public boolean isEmpty() // Returns true if this BST is empty; otherwise, returns false. { return (root == null); } public T min() // If this BST is empty, returns null; // otherwise returns the smallest element of the tree. { if (isEmpty()) return null; else { BSTNode node = root; while (node.getLeft() != null) node = node.getLeft(); return node.getInfo(); } } public T max() // If this BST is empty, returns null; // otherwise returns the largest element of the tree. { if (isEmpty()) return null; else { BSTNode node = root; while (node.getRight() != null) node = node.getRight(); return node.getInfo(); } } private int recSize(BSTNode node) // Returns the number of elements in subtree rooted at node. { if (node == null) return 0; else return 1 + recSize(node.getLeft()) + recSize(node.getRight()); } public int size() // Returns the number of elements in this BST. { return recSize(root); } public int size2() // Returns the number of elements in this BST. { int count = 0; if (root != null) { LinkedStack> nodeStack = new LinkedStack>(); BSTNode currNode; nodeStack.push(root); while (!nodeStack.isEmpty()) { currNode = nodeStack.top(); nodeStack.pop(); count++; if (currNode.getLeft() != null) nodeStack.push(currNode.getLeft()); if (currNode.getRight() != null) nodeStack.push(currNode.getRight()); } } return count; } private boolean recContains(T target, BSTNode node) // Returns true if the subtree rooted at node contains info i such that // comp.compare(target, i) == 0; otherwise, returns false. { if (node == null) return false; // target is not found else if (comp.compare(target, node.getInfo()) < 0) return recContains(target, node.getLeft()); // Search left subtree else if (comp.compare(target, node.getInfo()) > 0) return recContains(target, node.getRight()); // Search right subtree else return true; // target is found } public boolean contains (T target) // Returns true if this BST contains a node with info i such that // comp.compare(target, i) == 0; otherwise, returns false. { return recContains(target, root); } private T recGet(T target, BSTNode node) // Returns info i from the subtree rooted at node such that // comp.compare(target, i) == 0; if no such info exists, returns null. { if (node == null) return null; // target is not found else if (comp.compare(target, node.getInfo()) < 0) return recGet(target, node.getLeft()); // get from left subtree else if (comp.compare(target, node.getInfo()) > 0) return recGet(target, node.getRight()); // get from right subtree else return node.getInfo(); // target is found } public T get(T target) // Returns info i from node of this BST where comp.compare(target, i) == 0; // if no such node exists, returns null. { return recGet(target, root); } private BSTNode recAdd(T element, BSTNode node) // Adds element to tree rooted at node; tree retains its BST property. { if (node == null) // Addition place found node = new BSTNode(element); else if (comp.compare(element, node.getInfo()) <= 0) node.setLeft(recAdd(element, node.getLeft())); // Add in left subtree else node.setRight(recAdd(element, node.getRight())); // Add in right subtree return node; } What will be the ouput of the c(Given Code pic)?
import java.util.*; // Iterator, Comparator public class BinarySearchTree implements BSTInterface { protected BSTNode root; // reference to the root of this BST protected Comparator comp; // used for all comparisons protected boolean found; // used by remove public BinarySearchTree() // Precondition: T implements Comparable // Creates an empty BST object - uses the natural order of elements. { root = null; comp = new Comparator() { public int compare(T element1, T element2) { return ((Comparable)element1).compareTo(element2); } }; } public BinarySearchTree(Comparator comp) // Creates an empty BST object - uses Comparator comp for order // of elements. { root = null; this.comp = comp; } public boolean isFull() // Returns false; this link-based BST is never full. { return false; } public boolean isEmpty() // Returns true if this BST is empty; otherwise, returns false. { return (root == null); } public T min() // If this BST is empty, returns null; // otherwise returns the smallest element of the tree. { if (isEmpty()) return null; else { BSTNode node = root; while (node.getLeft() != null) node = node.getLeft(); return node.getInfo(); } } public T max() // If this BST is empty, returns null; // otherwise returns the largest element of the tree. { if (isEmpty()) return null; else { BSTNode node = root; while (node.getRight() != null) node = node.getRight(); return node.getInfo(); } } private int recSize(BSTNode node) // Returns the number of elements in subtree rooted at node. { if (node == null) return 0; else return 1 + recSize(node.getLeft()) + recSize(node.getRight()); } public int size() // Returns the number of elements in this BST. { return recSize(root); } public int size2() // Returns the number of elements in this BST. { int count = 0; if (root != null) { LinkedStack> nodeStack = new LinkedStack>(); BSTNode currNode; nodeStack.push(root); while (!nodeStack.isEmpty()) { currNode = nodeStack.top(); nodeStack.pop(); count++; if (currNode.getLeft() != null) nodeStack.push(currNode.getLeft()); if (currNode.getRight() != null) nodeStack.push(currNode.getRight()); } } return count; } private boolean recContains(T target, BSTNode node) // Returns true if the subtree rooted at node contains info i such that // comp.compare(target, i) == 0; otherwise, returns false. { if (node == null) return false; // target is not found else if (comp.compare(target, node.getInfo()) < 0) return recContains(target, node.getLeft()); // Search left subtree else if (comp.compare(target, node.getInfo()) > 0) return recContains(target, node.getRight()); // Search right subtree else return true; // target is found } public boolean contains (T target) // Returns true if this BST contains a node with info i such that // comp.compare(target, i) == 0; otherwise, returns false. { return recContains(target, root); } private T recGet(T target, BSTNode node) // Returns info i from the subtree rooted at node such that // comp.compare(target, i) == 0; if no such info exists, returns null. { if (node == null) return null; // target is not found else if (comp.compare(target, node.getInfo()) < 0) return recGet(target, node.getLeft()); // get from left subtree else if (comp.compare(target, node.getInfo()) > 0) return recGet(target, node.getRight()); // get from right subtree else return node.getInfo(); // target is found } public T get(T target) // Returns info i from node of this BST where comp.compare(target, i) == 0; // if no such node exists, returns null. { return recGet(target, root); } private BSTNode recAdd(T element, BSTNode node) // Adds element to tree rooted at node; tree retains its BST property. { if (node == null) // Addition place found node = new BSTNode(element); else if (comp.compare(element, node.getInfo()) <= 0) node.setLeft(recAdd(element, node.getLeft())); // Add in left subtree else node.setRight(recAdd(element, node.getRight())); // Add in right subtree return node; } What will be the ouput of the c(Given Code pic)?
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Given Class:-
import java.util.*; // Iterator, Comparator
public class BinarySearchTree<T> implements BSTInterface<T>
{
protected BSTNode<T> root; // reference to the root of this BST
protected Comparator<T> comp; // used for all comparisons
protected boolean found; // used by remove
public BinarySearchTree()
// Precondition: T implements Comparable
// Creates an empty BST object - uses the natural order of elements.
{
root = null;
comp = new Comparator<T>()
{
public int compare(T element1, T element2)
{
return ((Comparable)element1).compareTo(element2);
}
};
}
public BinarySearchTree(Comparator<T> comp)
// Creates an empty BST object - uses Comparator comp for order
// of elements.
{
root = null;
this.comp = comp;
}
public boolean isFull()
// Returns false; this link-based BST is never full.
{
return false;
}
public boolean isEmpty()
// Returns true if this BST is empty; otherwise, returns false.
{
return (root == null);
}
public T min()
// If this BST is empty, returns null;
// otherwise returns the smallest element of the tree.
{
if (isEmpty())
return null;
else
public class BinarySearchTree<T> implements BSTInterface<T>
{
protected BSTNode<T> root; // reference to the root of this BST
protected Comparator<T> comp; // used for all comparisons
protected boolean found; // used by remove
public BinarySearchTree()
// Precondition: T implements Comparable
// Creates an empty BST object - uses the natural order of elements.
{
root = null;
comp = new Comparator<T>()
{
public int compare(T element1, T element2)
{
return ((Comparable)element1).compareTo(element2);
}
};
}
public BinarySearchTree(Comparator<T> comp)
// Creates an empty BST object - uses Comparator comp for order
// of elements.
{
root = null;
this.comp = comp;
}
public boolean isFull()
// Returns false; this link-based BST is never full.
{
return false;
}
public boolean isEmpty()
// Returns true if this BST is empty; otherwise, returns false.
{
return (root == null);
}
public T min()
// If this BST is empty, returns null;
// otherwise returns the smallest element of the tree.
{
if (isEmpty())
return null;
else
{
BSTNode<T> node = root;
while (node.getLeft() != null)
node = node.getLeft();
return node.getInfo();
}
}
public T max()
// If this BST is empty, returns null;
// otherwise returns the largest element of the tree.
{
if (isEmpty())
return null;
else
{
BSTNode<T> node = root;
while (node.getRight() != null)
node = node.getRight();
return node.getInfo();
}
}
private int recSize(BSTNode<T> node)
// Returns the number of elements in subtree rooted at node.
{
if (node == null)
return 0;
else
return 1 + recSize(node.getLeft()) + recSize(node.getRight());
}
public int size()
// Returns the number of elements in this BST.
{
return recSize(root);
}
public int size2()
// Returns the number of elements in this BST.
{
int count = 0;
if (root != null)
{
LinkedStack<BSTNode<T>> nodeStack = new LinkedStack<BSTNode<T>>();
BSTNode<T> currNode;
nodeStack.push(root);
while (!nodeStack.isEmpty())
{
currNode = nodeStack.top();
nodeStack.pop();
count++;
if (currNode.getLeft() != null)
nodeStack.push(currNode.getLeft());
if (currNode.getRight() != null)
nodeStack.push(currNode.getRight());
}
}
return count;
BSTNode<T> node = root;
while (node.getLeft() != null)
node = node.getLeft();
return node.getInfo();
}
}
public T max()
// If this BST is empty, returns null;
// otherwise returns the largest element of the tree.
{
if (isEmpty())
return null;
else
{
BSTNode<T> node = root;
while (node.getRight() != null)
node = node.getRight();
return node.getInfo();
}
}
private int recSize(BSTNode<T> node)
// Returns the number of elements in subtree rooted at node.
{
if (node == null)
return 0;
else
return 1 + recSize(node.getLeft()) + recSize(node.getRight());
}
public int size()
// Returns the number of elements in this BST.
{
return recSize(root);
}
public int size2()
// Returns the number of elements in this BST.
{
int count = 0;
if (root != null)
{
LinkedStack<BSTNode<T>> nodeStack = new LinkedStack<BSTNode<T>>();
BSTNode<T> currNode;
nodeStack.push(root);
while (!nodeStack.isEmpty())
{
currNode = nodeStack.top();
nodeStack.pop();
count++;
if (currNode.getLeft() != null)
nodeStack.push(currNode.getLeft());
if (currNode.getRight() != null)
nodeStack.push(currNode.getRight());
}
}
return count;
}
private boolean recContains(T target, BSTNode<T> node)
// Returns true if the subtree rooted at node contains info i such that
// comp.compare(target, i) == 0; otherwise, returns false.
{
if (node == null)
return false; // target is not found
else if (comp.compare(target, node.getInfo()) < 0)
return recContains(target, node.getLeft()); // Search left subtree
else if (comp.compare(target, node.getInfo()) > 0)
return recContains(target, node.getRight()); // Search right subtree
else
return true; // target is found
}
public boolean contains (T target)
// Returns true if this BST contains a node with info i such that
// comp.compare(target, i) == 0; otherwise, returns false.
{
return recContains(target, root);
}
private T recGet(T target, BSTNode<T> node)
// Returns info i from the subtree rooted at node such that
// comp.compare(target, i) == 0; if no such info exists, returns null.
{
if (node == null)
return null; // target is not found
else if (comp.compare(target, node.getInfo()) < 0)
return recGet(target, node.getLeft()); // get from left subtree
else
if (comp.compare(target, node.getInfo()) > 0)
return recGet(target, node.getRight()); // get from right subtree
else
return node.getInfo(); // target is found
}
public T get(T target)
// Returns info i from node of this BST where comp.compare(target, i) == 0;
// if no such node exists, returns null.
{
return recGet(target, root);
}
private BSTNode<T> recAdd(T element, BSTNode<T> node)
// Adds element to tree rooted at node; tree retains its BST property.
{
if (node == null)
// Addition place found
node = new BSTNode<T>(element);
else if (comp.compare(element, node.getInfo()) <= 0)
node.setLeft(recAdd(element, node.getLeft())); // Add in left subtree
else
node.setRight(recAdd(element, node.getRight())); // Add in right subtree
return node;
}
private boolean recContains(T target, BSTNode<T> node)
// Returns true if the subtree rooted at node contains info i such that
// comp.compare(target, i) == 0; otherwise, returns false.
{
if (node == null)
return false; // target is not found
else if (comp.compare(target, node.getInfo()) < 0)
return recContains(target, node.getLeft()); // Search left subtree
else if (comp.compare(target, node.getInfo()) > 0)
return recContains(target, node.getRight()); // Search right subtree
else
return true; // target is found
}
public boolean contains (T target)
// Returns true if this BST contains a node with info i such that
// comp.compare(target, i) == 0; otherwise, returns false.
{
return recContains(target, root);
}
private T recGet(T target, BSTNode<T> node)
// Returns info i from the subtree rooted at node such that
// comp.compare(target, i) == 0; if no such info exists, returns null.
{
if (node == null)
return null; // target is not found
else if (comp.compare(target, node.getInfo()) < 0)
return recGet(target, node.getLeft()); // get from left subtree
else
if (comp.compare(target, node.getInfo()) > 0)
return recGet(target, node.getRight()); // get from right subtree
else
return node.getInfo(); // target is found
}
public T get(T target)
// Returns info i from node of this BST where comp.compare(target, i) == 0;
// if no such node exists, returns null.
{
return recGet(target, root);
}
private BSTNode<T> recAdd(T element, BSTNode<T> node)
// Adds element to tree rooted at node; tree retains its BST property.
{
if (node == null)
// Addition place found
node = new BSTNode<T>(element);
else if (comp.compare(element, node.getInfo()) <= 0)
node.setLeft(recAdd(element, node.getLeft())); // Add in left subtree
else
node.setRight(recAdd(element, node.getRight())); // Add in right subtree
return node;
}
What will be the ouput of the c(Given Code pic)?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education