How much charge must you give the suit if you want to fall down toward the sheet, but at the same rate as if you were on the Moon (remembering that the gravitational acceleration on the Moon is 1/6 what it is on Earth)?
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
Imagine that you’ve been invited to try out a new hoversuit , and here's how it works: Someone has set
up a large flat sheet, many kilometers across, somewhere on the Earth, and they’ve charged the sheet
up to a uniform charge density of 8.45 x 10^-6 C. You are issued a special suit that you wear, and it has
controls on it which allow you to charge the suit up to any number of Coulombs (C), positive or negative,
that you might want. The idea is that you can control the amount of electrical repulsion (or attraction)
between the suit and the charged sheet below you. Your mass including the suit is 74.3 kg. How much
charge must you give the suit if you want to fall down toward the sheet, but at the same rate as if you
were on the Moon (remembering that the gravitational acceleration on the Moon is 1/6 what it is on
Earth)?
1.27E-03 C
1.78E-03 C
1.91E-03 C
2.29E-03 C
Step by step
Solved in 4 steps with 4 images