Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
For the experiment of Investigating Entropy
Trail 1: NaOH: 2.037g, H2O: 50.038mL, inital temperature: 21.4°C, and final temperature: 29.2°C
Trail 2: NaOH: 2.074g, H2O: 50.017mL, inital temperature: 23.1°C, and final temperature: 30.9°C
Trail 3: NaOH: 2.028g, H2O: 50.012mL, inital temperature: 22.9°C, and final temperature: 32.0°C
a. Find q system (remember q system =-q sumoundings)
b. Find ∆H = Asystem moles salt dissolved
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- What are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forwardWhen 1.000 g of ethylene glycol, C2H6O2, is burned at 25C and 1.00 atmosphere pressure, H2O(l) and CO2(g) are formed with the evolution of 19.18 kJ of heat. a Calculate the molar enthalpy of formation of ethylene glycol. (It will be necessary to use data from Appendix C.) b Gf of ethylene glycol is 322.5 kJ/mol. What is G for the combustion of 1 mol ethylene glycol? c What is S for the combustion of 1 mol ethylene glycol?arrow_forwardExplain why absolute entropies can be measured.arrow_forward
- An ideal gas expands isothermally (at constant temperature). The internal energy of an ideal gas remains constant during an isothermal change. If q is 76 J, what are U and w?arrow_forwardNatural gas is mostly CH4. When it burns, the chemical reaction is CH4 g 2O2 g CO2 g 2H2O g The H of combustion of one mole of CH4 at 25.0 C is -890.9 kJ. Calculate q, w, and U under these conditions, assuming an external pressure of 1.07 atm.arrow_forwardThe enthalpy of vaporization for water is 40.65 kJ mol-1. As a design engineer for a project in a desert climate, you are exploring the option of using evaporative cooling. (a) If the air has an average volumetric heat capacity of 0.00130 J cm-3 K-1, what is the minimum mass of water that would need to evaporate in order to cool a 5 m? 5 m room with a 3 m ceiling by 5°F using this method? (b) Is this a spontaneous or nonspontaneous process?arrow_forward
- A 220-ft3 sample of gas at standard temperature and pressure is compressed into a cylinder, where it exerts pressure of 2000 psi. Calculate the work (in J) performed when this gas expands isothermally against an opposing pressure of 1.0 atm. (The amount of work that can be done is equivalent to the destructive force of about 1/4 lb of dynamite, giving you an idea of how potentially destructive compressed gas cylinders can be if improperly handled!)arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the formation of hydrogen sulfide from the elements? H2(g)+18S8(s)H2S(g)arrow_forward2. Which of the following is true for a spontaneous process but not for a nonspontaneous process? Energy in the universe is concentrated conserved dispersed not conservedarrow_forward
- Appendix J lists standard molar entropies S, not standard entropies of formation rS. Why is this possible forentropy but not for internal energy, enthalpy, or Gibbsfree energy?arrow_forwardThe standard molar entropy of methanol vapor, CH3OH(g), is 239.8 J K1 mol-1. (a) Calculate the entropy change for the vaporization of 1 mol methanol (use data from Table 16.1 or Appendix J). (b) Calculate the enthalpy of vaporization of methanol, assuming that rS doesnt depend on temperature and taking the boiling point of methanol to be 64.6C.arrow_forwardExplain why the statement No process is 100 efficient is not the best statement of the second law of thermodynamics.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning