For the beam shown, the magnitude of the concentrated load is P = 21 kN, the magnitude of the couple is MB = 210 kN-m, and the beam lengths are a = 4.3 m and b = 12.9 m. (a) derive equations for the shear force V and the bending moment M for any location in the beam. Place the origin at point A. (b) use the derived functions to plot the shear-force and bending-moment diagrams for the beam. Use your diagrams to determine the magnitudes of the maximum shear force and the maximum bending moment. Note that answers may be positive or negative. Here, "maximum" refers to the largest magnitude value, but you should enter your shear force and bending moment with the correct sign, using the sign convention presented in Section 7.2 of the textbook. If the magnitudes of the largest positive and largest negative values are the same, enter a positive number. MB a Answer: Vmax kN Mmax i kN-m

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter4: Shear Forces And Bending Moments
Section: Chapter Questions
Problem 4.5.27P: The simple beam ACE shown in the figure is subjected to a triangular load of maximum intensity q0=...
icon
Related questions
Question
For the beam shown, the magnitude of the concentrated load is P = 21 kN, the magnitude of the couple is MB = 210 kN-m, and the beam
lengths are a = 4.3 m and b = 12.9 m.
(a) derive equations for the shear force V and the bending moment M for any location in the beam. Place the origin at point A.
(b) use the derived functions to plot the shear-force and bending-moment diagrams for the beam. Use your diagrams to determine the
magnitudes of the maximum shear force and the maximum bending moment.
Note that answers may be positive or negative. Here, "maximum" refers to the largest magnitude value, but you should enter your
shear force and bending moment with the correct sign, using the sign convention presented in Section 7.2 of the textbook. If the
magnitudes of the largest positive and largest negative values are the same, enter a positive number.
MB
b
a
Answer:
kN
max
kN-m
Mmax
i
%3D
B.
Transcribed Image Text:For the beam shown, the magnitude of the concentrated load is P = 21 kN, the magnitude of the couple is MB = 210 kN-m, and the beam lengths are a = 4.3 m and b = 12.9 m. (a) derive equations for the shear force V and the bending moment M for any location in the beam. Place the origin at point A. (b) use the derived functions to plot the shear-force and bending-moment diagrams for the beam. Use your diagrams to determine the magnitudes of the maximum shear force and the maximum bending moment. Note that answers may be positive or negative. Here, "maximum" refers to the largest magnitude value, but you should enter your shear force and bending moment with the correct sign, using the sign convention presented in Section 7.2 of the textbook. If the magnitudes of the largest positive and largest negative values are the same, enter a positive number. MB b a Answer: kN max kN-m Mmax i %3D B.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Bending
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning