
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%

Transcribed Image Text:Does Bi<0.1 really suggest a negligible temperature gradient? A straight fin of uniform
circular cross section is fabricated from a material with a constant thermal conductivity.
The fin has a radius of 20 mm and a length of 100 mm. The convection heat transfer
coefficient is 500 W/m2-K with an ambient fluid temperature of T=30 °C. The base of the
fin is maintained at T,=100 °C, while the fin tip is heavily insulated. Temperature gradients
in the circumferential direction of the fin are negligible. Using the finite-volume technique
with volumes that are 2 mm on a side, estimate the temperature distribution within the fin
for a fin with a thermal conductivity of (a) 50 W/m-K and (b) 0.5 W/m-K.
1. For both cases, plot the temperature along the fin axis on the centerline of the fin
and on the outer surface of the fin.
2. For both cases, also calculate the fin heat transfer rate, qin.
3. Compare the fin heat transfer rate that you determined via FVM with the one-
dimensional, analytical solution from Table 3.4.
4. Comment on the validity of the Biot number as a guide regarding the importance
of temperature gradients.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- This question requires the use of the conduction charts given in the appendix at the end of this paper. A wooden sphere of diameter 5 cm is initially at a uniform temperature of 21 °C. Its surface temperature is suddenly raised to 83 °C. The thermal conductivity and thermal diffusivity of the wood are 0.15 W/m K and 0.82 x 10-7 m2/s, respectively. a) Calculate the temperature 2 cm beneath the surface of the sphere 30 min after the sudden increase in temperature. b) Calculate the energy gained by the sphere during this time.arrow_forwardTemp base is 156 not 456 as in the diagramarrow_forwardPlease solve quicklyarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY