Question
Consider the three-dimensional harmonic oscillator, for which the potential is
V ( r ) = 1/2 m ω2 r2
(a) Show that the separation of variables in Cartesian coordinates turns this into three one-dimensional oscillators, and exploit your knowledge of the latter to determine the allowed energies.
Answer: En = ( n + 3/2 ) ħ ω
(b) Determine the degeneracy d ( n ) of En
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images

Knowledge Booster
Similar questions
- The Newton–Raphson method for finding the stationary point(s) Rsp of a potential energy surface V is based on a Taylor-series expansion around a guess, R0. Similarly, the velocity Verlet algorithm for integrating molecular dynamics trajectories [xt, vt] is based on a Taylor-series expansion around the initial conditions, [x0, v0]. Both of these methods rely strictly on local information about the system. How many derivatives do we need to compute in order to apply them?arrow_forwardFor Problem 8.37, how do I find <1/r> within the integral? I think that the exponent function inside of P(r) is actually troublesome to finding what I need to find; however, I am not certain of what's really the correct procedure here.arrow_forwardBy employing the prescribed definitions of the raising and lowering operators pertaining to the one-dimensional harmonic oscillator: x = ħ 2mω -(â+ + â_) hmw ê = i Compute the expectation values of the following quantities for the nth stationary staten. Keep in mind that the stationary states form an orthogonal set. 2 · (â+ − â_) [ pm 4ndx YmVndx = 8mn a. The position of particle (x) b. The momentum of the particle (p). c. (x²) d. (p²) e. Confirm that the uncertainty principle is satisfied for all values of narrow_forward
- Consider the half oscillator" in which a particle of mass m is restricted to the region x > 0 by the potential energy U(x) = 00 for a O where k is the spring constant. What are the energies of the ground state and fırst excited state? Explain your reasoning. Give the energies in terms of the oscillator frequency wo = Vk/m. Formulas.pdf (Click here-->)arrow_forwardI need the answer as soon as possiblearrow_forwardFind a potential function for F or determine that F is not conservative. (If F is not conservative, enter NOT CONSERVATIVE.) F = (2xy + 3, x2 – 22, -2y)arrow_forward
arrow_back_ios
arrow_forward_ios