MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- Interpret the belavg coefficient. thank youarrow_forwardNonearrow_forwardYou estimated a regression with the following output. Source | SS df MS Number of obs = 325 -------------+---------------------------------- F(1, 323) = 42850.36 Model | 285905003 1 285905003 Prob > F = 0.0000 Residual | 2155111.65 323 6672.17228 R-squared = 0.9925 -------------+---------------------------------- Adj R-squared = 0.9925 Total | 288060115 324 889074.429 Root MSE = 81.683 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 11.83842 .0571895 207.00 0.000 11.72591 11.95093 _cons | 52.14457 5.949458 8.76 0.000 40.43999 63.84915…arrow_forward
- You estimated a regression with the following output. Source | SS df MS Number of obs = 246 -------------+---------------------------------- F(1, 244) = 16642.70 Model | 187647307 1 187647307 Prob > F = 0.0000 Residual | 2751112.55 244 11275.0514 R-squared = 0.9856 -------------+---------------------------------- Adj R-squared = 0.9855 Total | 190398419 245 777136.405 Root MSE = 106.18 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 13.79687 .106947 129.01 0.000 13.58621 14.00753 _cons | 17.60822 9.208341 1.91 0.057 -.5297613 35.7462…arrow_forwardFrom the results shown above, write the regression equation.arrow_forwardYou estimated a regression with the following output. Source | SS df MS Number of obs = 494 -------------+---------------------------------- F(1, 492) = 38566.69 Model | 803403712 1 803403712 Prob > F = 0.0000 Residual | 10249120.6 492 20831.546 R-squared = 0.9874 -------------+---------------------------------- Adj R-squared = 0.9874 Total | 813652832 493 1650411.42 Root MSE = 144.33 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 23.00296 .1171325 196.38 0.000 22.77281 23.2331 _cons | 34.71944 13.12788 2.64 0.008 8.925808 60.51307…arrow_forward
- You estimated a regression with the following output. Source | SS df MS Number of obs = 423 -------------+---------------------------------- F(1, 421) = 267.80 Model | 8758968.84 1 8758968.84 Prob > F = 0.0000 Residual | 13769523.8 421 32706.7074 R-squared = 0.3888 -------------+---------------------------------- Adj R-squared = 0.3873 Total | 22528492.7 422 53385.0537 Root MSE = 180.85 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 6.150402 .3758334 16.36 0.000 5.411658 6.889145 _cons | -8.022201 24.02003 -0.33 0.739 -55.23632 39.19192…arrow_forwardAn automobile rental company wants to predict the yearly maintenance expense (Y) for an automobile using the number of miles driven during the year () and the age of the car (, in years) at the beginning of the year. The company has gathered the data on 10 automobiles and run a regression analysis with the results shown below:. Summary measures Multiple R 0.9689 R-Square 0.9387 Adj R-Square 0.9212 StErr of Estimate 72.218 Regression coefficients Coefficient Std Err t-value p-value Constant 33.796 48.181 0.7014 0.5057 Miles Driven 0.0549 0.0191 2.8666 0.0241 Age of car 21.467 20.573 1.0434 0.3314 Use the information above to estimate the annual maintenance expense for a 10 years old car with 60,000 miles.arrow_forwardThe slope, b represents * O predicted value of Y when X = 0. O the estimated average change in Y per unit change in X. O variation around the line of regression. O the predicted value of Y.arrow_forward
- You estimated a regression with the following output. Source | SS df MS Number of obs = 208 -------------+---------------------------------- F(1, 206) > 99999.00 Model | 2.3001e+09 1 2.3001e+09 Prob > F = 0.0000 Residual | 4378568.43 206 21255.1865 R-squared = 0.9981 -------------+---------------------------------- Adj R-squared = 0.9981 Total | 2.3045e+09 207 11132679.3 Root MSE = 145.79 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 36.19925 .1100424 328.96 0.000 35.9823 36.41621 _cons | 12.65388 12.36197 1.02 0.307 -11.71832 37.02608…arrow_forward2. You estimated a regression with the following output. Source | SS df MS Number of obs = 332 -------------+---------------------------------- F(1, 330) = 2.32 Model | 71599.1822 1 71599.1822 Prob > F = 0.1284 Residual | 10170207.7 330 30818.8111 R-squared = 0.0070 -------------+---------------------------------- Adj R-squared = 0.0040 Total | 10241806.9 331 30942.0147 Root MSE = 175.55 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | .7575183 .4969893 1.52 0.128 -.2201484 1.735185 _cons | 28.87757 42.80371 0.67 0.500 -55.32498 113.0801…arrow_forwardIn bivariate regression, the value of Y when X equals 0 is: Group of answer choices Intercept (b0) Residual Slope (b1)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman