Concept explainers
You estimated the following regression. Which of the following is the estimated regression line?
Source | SS df MS Number of obs = 161
-------------+---------------------------------- F(1, 159) = 541.37
Model | 18320668.9 1 18320668.9 Prob > F = 0.0000
Residual | 5380812.42 159 33841.5875 R-squared = 0.7730
-------------+---------------------------------- Adj R-squared = 0.7715
Total | 23701481.3 160 148134.258 Root MSE = 183.96
------------------------------------------------------------------------------
Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
X | 13.8887 .5969203 23.27 0.000 12.70979 15.06762
_cons | 88.26833 41.00599 2.15 0.033 7.281658 169.255
------------------------------------------------------------------------------
a Y = 41.01 + 0.60*X
b Y = 88.27 + 13.89*X
c Y = 13.89 + 88.27*X
d Y = 0.60 + 41.01*X
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
- 1. You estimated a regression with the following output. Source | SS df MS Number of obs = 210 -------------+---------------------------------- F(1, 208) = 940.28 Model | 5529353.01 1 5529353.01 Prob > F = 0.0000 Residual | 1223155.7 208 5880.55624 R-squared = 0.8189 -------------+---------------------------------- Adj R-squared = 0.8180 Total | 6752508.71 209 32308.6541 Root MSE = 76.685 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 13.66711 .4457062 30.66 0.000 12.78843 14.54579 _cons | 103.7139 41.86814 2.48 0.014 21.17362 186.2542…arrow_forwardUse this multiple regression table to answer the series of questions below. Although it is here for your convenience, you can also find it on page 26 of the assigned reading "How do I Interpret Multiple Regression?" Feel free to use the text of that reading to help you answer the questions here. What is the dependent variable?arrow_forward4. You estimated the following regression. Which of the following is the estimated regression line? Source | SS df MS Number of obs = 309-------------+---------------------------------- F(1, 307) > 99999.00 Model | 3.4298e+09 1 3.4298e+09 Prob > F = 0.0000 Residual | 5008792.71 307 16315.2857 R-squared = 0.9985-------------+---------------------------------- Adj R-squared = 0.9985 Total | 3.4348e+09 308 11152012 Root MSE = 127.73------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- X | 39.83786 .0868877 458.50 0.000 39.66689 40.00883 _cons | 55.9075 9.036526 6.19 0.000 38.12613…arrow_forward
- The results shown to the right provide the X-values, residuals, and a residual plot from a regression analysis. Is there any evidence of a pattern in the residuals? Explain. Choose the correct answer below. A. Yes, the residuals show a distinct cyclical pattern. O B. Yes, the residuals show a distinct curved pattern. C. No, the residuals appear to be randomly spread. OR Yes the residuals show decreasing variation O C X 1 234567890 10 Residuals 0.78 -0.71 1.17 -0.63 2.45 -0.77 0.27 1.64 - 1.24 1.66 Residuals 3- 2- 1- ● хол- To 10arrow_forwardYou estimated a regression with the following output. Source | SS df MS Number of obs = 248 -------------+---------------------------------- F(1, 246) > 99999.00 Model | 1.2864e+09 1 1.2864e+09 Prob > F = 0.0000 Residual | 980713.166 246 3986.63889 R-squared = 0.9992 -------------+---------------------------------- Adj R-squared = 0.9992 Total | 1.2874e+09 247 5212005.66 Root MSE = 63.14 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 38.34444 .0675026 568.04 0.000 38.21148 38.4774 _cons | 49.99803 5.986441 8.35 0.000 38.20681 61.78925…arrow_forwardGiven the following, determine the price of a Corolla that is six years old given the graph of the regression line.arrow_forward
- You estimated a regression with the following output. Source | SS df MS Number of obs = 325 -------------+---------------------------------- F(1, 323) = 42850.36 Model | 285905003 1 285905003 Prob > F = 0.0000 Residual | 2155111.65 323 6672.17228 R-squared = 0.9925 -------------+---------------------------------- Adj R-squared = 0.9925 Total | 288060115 324 889074.429 Root MSE = 81.683 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 11.83842 .0571895 207.00 0.000 11.72591 11.95093 _cons | 52.14457 5.949458 8.76 0.000 40.43999 63.84915…arrow_forwardYou estimated a regression with the following output. Source | SS df MS Number of obs = 246 -------------+---------------------------------- F(1, 244) = 16642.70 Model | 187647307 1 187647307 Prob > F = 0.0000 Residual | 2751112.55 244 11275.0514 R-squared = 0.9856 -------------+---------------------------------- Adj R-squared = 0.9855 Total | 190398419 245 777136.405 Root MSE = 106.18 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 13.79687 .106947 129.01 0.000 13.58621 14.00753 _cons | 17.60822 9.208341 1.91 0.057 -.5297613 35.7462…arrow_forwardYou estimated a regression with the following output. Source | SS df MS Number of obs = 494 -------------+---------------------------------- F(1, 492) = 38566.69 Model | 803403712 1 803403712 Prob > F = 0.0000 Residual | 10249120.6 492 20831.546 R-squared = 0.9874 -------------+---------------------------------- Adj R-squared = 0.9874 Total | 813652832 493 1650411.42 Root MSE = 144.33 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 23.00296 .1171325 196.38 0.000 22.77281 23.2331 _cons | 34.71944 13.12788 2.64 0.008 8.925808 60.51307…arrow_forward
- You estimated a regression with the following output. Source | SS df MS Number of obs = 423 -------------+---------------------------------- F(1, 421) = 267.80 Model | 8758968.84 1 8758968.84 Prob > F = 0.0000 Residual | 13769523.8 421 32706.7074 R-squared = 0.3888 -------------+---------------------------------- Adj R-squared = 0.3873 Total | 22528492.7 422 53385.0537 Root MSE = 180.85 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 6.150402 .3758334 16.36 0.000 5.411658 6.889145 _cons | -8.022201 24.02003 -0.33 0.739 -55.23632 39.19192…arrow_forwardAn automobile rental company wants to predict the yearly maintenance expense (Y) for an automobile using the number of miles driven during the year () and the age of the car (, in years) at the beginning of the year. The company has gathered the data on 10 automobiles and run a regression analysis with the results shown below:. Summary measures Multiple R 0.9689 R-Square 0.9387 Adj R-Square 0.9212 StErr of Estimate 72.218 Regression coefficients Coefficient Std Err t-value p-value Constant 33.796 48.181 0.7014 0.5057 Miles Driven 0.0549 0.0191 2.8666 0.0241 Age of car 21.467 20.573 1.0434 0.3314 Use the information above to estimate the annual maintenance expense for a 10 years old car with 60,000 miles.arrow_forwardYou estimated a regression with the following output. Source | SS df MS Number of obs = 208 -------------+---------------------------------- F(1, 206) > 99999.00 Model | 2.3001e+09 1 2.3001e+09 Prob > F = 0.0000 Residual | 4378568.43 206 21255.1865 R-squared = 0.9981 -------------+---------------------------------- Adj R-squared = 0.9981 Total | 2.3045e+09 207 11132679.3 Root MSE = 145.79 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | 36.19925 .1100424 328.96 0.000 35.9823 36.41621 _cons | 12.65388 12.36197 1.02 0.307 -11.71832 37.02608…arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman