College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Calculate the magnitude of the normal force on a 17.7 kg block in the following circumstances. (Enter your answers in N.)
The block is on a level surface and a force of 165 N is exerted on it at an angle of 40.8° above the horizontal.
I don't know how to do this.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
This answer (281.4) was not right. Can you try again? I've been doing this question for ahwile and cannot get it.
Calculate the magnitude of the normal force on a 17.7 kg block in the following circumstances. (Enter your answers in N.)
The block is on a level surface and a force of 165 N is exerted on it at an angle of 40.8° above the horizontal.
Solution
by Bartleby Expert
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
This answer (281.4) was not right. Can you try again? I've been doing this question for ahwile and cannot get it.
Calculate the magnitude of the normal force on a 17.7 kg block in the following circumstances. (Enter your answers in N.)
The block is on a level surface and a force of 165 N is exerted on it at an angle of 40.8° above the horizontal.
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.880 m/s encounters a rough horizontal surface of length = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 293 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N direction --Select--- (b) Find the net work done on the crate while it is on the rough surface. (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardA warehouse worker is pushing a 90.0 kg crate with a horizontal force of 276N at a speed of v = 0.875m/s across the warehouse floor. He encounters a rough horizontal section of the floor that is 0.75 m long and where the coefficient of kinetic friction between the crate and floor is 0.353. (a) Determine the magnitude and direction of the net force acting on the crate while it is pushed over the rough section of the floor. magnitude Ndirection ---Select--- up down in the same direction as the motion of the crate in the opposite direction as the motion of the crate (b) Determine the net work done on the crate while it is pushed over the rough section of the floor. J (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.860 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.350 and he exerts a constant horizontal force of 291 N on the crate (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface.magnitude_____N direction (b) Find the net work done on the crate while it is on the rough surface. _____J(c) Find the speed of the crate when it reaches the end of the rough surface. ______m/sarrow_forward
- A 3.39kg block is pulled across a floor by a 16.25 N force. The coefficients of static and kinetic friction are 0.4 and 0.2. What is the speed of the block after 2.33 m?arrow_forwardA box with a mass of 7.24 kg is held at the top of frictionless inclined plane of length L = 10.9 m and an inclination angle 0 = 26.9 degrees above the horizontal. The box is released from rest and stops at a distanced = 22.62 m from the bottom of the inclined plane along the rough horizontal surface. What is the coefficient of kinetic friction between the box and the rough horizontal surface?arrow_forwardCurrent Attempt in Progress The figure shows a cold package of hot dogs sliding rightward across a frictionless floor through a distance d = 22.0 cm while three forces act on the package. Two of them are horizontal and have the magnitudes F₁ = 8.0 N and F₂ = 2.0 N; the third is angled down by = 60.0° and has the magnitude F3 = 7.0 N. (a) For the 22.0 cm displacement, what is the net work done on the package by the three applied forces, the gravitational force on the package, and the normal force on the package? (b) If the package has a mass of 4.0 kg and an initial kinetic energy of 0, what is its speed (in m/s) at the end of the displacement? (a) Number i (b) Number Units Units Hot Dogs Ve F F darrow_forward
- The ball launcher in a pinball machine has a spring that has a force constant of 50.0 N/m. The surface on which the ball moves is inclined 10.0° with respect to the horizontal. The spring is initially compressed 5.00 cm. Find the distance along the incline that the ball will go to (from the mean position of the spring), if the friction force = 0.1N. Mass of the ball = 20 gram.arrow_forwardA 1,040-N crate is being pushed across a level floor at a constant speed by a force F of 390 N at an angle of 20.0° below the horizontal, as shown in the figure a below. Two figures show a side view of a crate positioned upon a horizontal surface. Figure (a): An arrow pointing downward and to the right is labeled vector F and forms an angle of 20° below the horizontal as it approaches the upper left edge of the crate. Figure (b): An arrow pointing upward and to the right is labeled vector F and forms an angle of 20° above the horizontal as it extends from the upper right edge of the crate. (a) What is the coefficient of kinetic friction between the crate and the floor? (Enter your answer to at least three decimal places.)(b) If the 390-N force is instead pulling the block at an angle of 20.0° above the horizontal, as shown in the figure b, what will be the acceleration of the crate? Assume that the coefficient of friction is the same as that found in part (a).arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.880 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.354 and he exerts a constant horizontal force of 297 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N direction (b) Find the net work done on the crate while it is on the rough surface. J(c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forward
- The force acting on a particle varies as in the figure below. (The x axis is marked in increments of 0.500 m.) A coordinate plane has a horizontal axis labeled x (m) and a vertical axis labeled Fx (N). There are five points, connected by straight lines in order from A to E. Point A is at (0,0). Point B is at (2,6). Point C is at (4,0). Point D is at (5,−3). Point E is at (6,0). Find the work done by the force as the particle moves across the following distances. (a) from x = 0 m to x = 4.00 m J (b) from x = 4.00 m to x = 6.00 mJ(c) from x = 0 m to x = 6.00 mJarrow_forwardA 61.9-kg circus performer is fired from a cannon that is elevated at an angle of 57.3 ° above the horizontal. The cannon uses strong elastic bands to propel the performer, much in the same way that a slingshot fires a stone. Setting up for this stunt involves stretching the bands by 2.35 m from their unstrained length. At the point where the performer flies free of the bands, his height above the floor is the same as that of the net into which he is shot. He takes 3.02 s to travel the horizontal distance of 28.7 m between this point and the net. Ignore friction and air resistance and determine the effective spring constant of the firing mechanism. Number i Unitsarrow_forwardA man pushing a crate of mass m= 92.0 kg at a speed of v 0.860 m/s encounters a rough horizontal surface of length t=0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 286 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude direction --Select- (b) Find the net work done on the crate while it is on the rough surface. (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON