Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
At high temperatures, elemental nitrogen and oxygen react with each other to form nitrogen monoxide:
N2(g) + O2(g) = 2NO (g)
Suppose the system is analyzed at a particular temperature, and the equilibrium concentrations are found to be [N2] = 0.032 M, = [O2 ] 0.067 M, and [NO] = 4.1* 10-4 M. Calculate the value of K for the reaction.
K =
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calcium oxide and carbon dioxide react to form calcium carbonate, like this: CaO(s)+CO,(g)→CaCO3(s) At a certain temperature, a chemist finds that a 8.1 L reaction vessel containing a mixture of calcium oxide, carbon dioxide, and calcium carbonate at equilibrium has the following composition: compound amount СаО 43.8 g CO2 40.9 g CaCO3 55.4 g Calculate the value of the equilibrium constant K, for this reaction. Round your answer to 2 significant digits. K = 0 x10arrow_forwardSulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in sulfuric acid synthesis. An industrial chemist studying this reaction fills a 500. ml. flask with 1.4 atm of sulfur dioxide gas and 1.8 atm of oxygen gas, and when the mixture has come to equilibrium measures the partial pressure of sulfur trioxide gas to be 0.84 atm. Calculate the pressure equilibrium constant for the reaction of sulfur dioxide and oxygen at the final temperature of the mixture. Round your answer to 2 significant digits. K Р 0 X olaarrow_forwardCalculate the equilibrium concentrations for all reactants and products if initial concentrations of CH4 is 0.400 M, H2S is 0.800 M, CS2 is 0.400 M, H2 is 0.800 M are mixed and allowed to establish equilibrium. The Kc for the reaction is 0.0360 and the equilibrium concentration of CH4is 0.556 M. CH4(g) + 2H2S(g) ↔ CS2(g) + 4H2(g) Group of answer choices [CH4] = 0.556 M, [H2S] = 0.488 M, [CS2] = 0.556 M, [H2] = 1.42 M. [CH4] = 0.556 M, [H2S] = 1.11 M, [CS2] = 0.244 M, [H2] = 0.176 M. [CH4] = 0.556 M, [H2S] = 0.244 M, [CS2] = 0.956 M, [H2] = 1.36 M. [CH4] = 0.556 M, [H2S] = 1.11 M, [CS2] = 0.556 M, [H2] = 1.42 M.arrow_forward
- Suppose a 250. mL flask is filled with 1.1 mol of Cl2, 0.20 mol of CHCl3 and 2.0 mol of HCl. The following reaction becomes possible: Cl2(g) + CHCl3(g) HCl(g) +CCI4(g) The equilibrium constant K for this reaction is 0.652 at the temperature of the flask. Calculate the equilibrium molarity of HCI. Round your answer to two decimal places. Ом X Garrow_forwardSuppose a 250. mL flask is filled with 1.6 mol of Br₂, 0.70 mol of OC12 and 0.50 mol of BrCl. The following reaction becomes possible: Br₂(g) + OC1₂(g) → BrOC1 (g) + BrCl(g) The equilibrium constant K for this reaction is 2.87 at the temperature of the flask. Calculate the equilibrium molarity of Br₂. Round your answer to two decimal places. M Śarrow_forwardwrite your answer in scientific notationarrow_forward
- A student ran the following reaction in the laboratory at 672 K: 2NH3(g) N2(g) + 3H2(g) When she introduced 6.42×10-2 moles of NH3(g) into a 1.00 Liter container, she found the equilibrium concentration of H2(g) to be 9.09×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.arrow_forwardSteam reforming of methane (CH4) produces "synthesis gas," a mixture of carbon monoxide gas and hydrogen gas, which is the starting point for many important industrial chemical syntheses. An industrial chemist studying this reaction fills a 200. mL flask with 4.2 atm of methane gas and 2.8 atm of water vapor, and when the mixture has come to equilibrium measures the partial pressure of carbon monoxide gas to be 2.5 atm. Calculate the pressure equilibrium constant for the steam reforming of methane at the final temperature of the mixture. Round your answer to 2 significant digits.arrow_forwardThe equilibrium constant, K, for the following reaction is 9.52×10 2 at 350 K. CH, (g) + CCI, (g)=2 CH,Cl, (g) Calculate the equilibrium concentrations of reactants and product when 0.310 moles of CH, and 0.310 moles of CCI, are introduced into a 1.00 L vessel at 350 K. [CH ] M [CCL] =D M [CH,Cl, ] = Marrow_forward
- A student ran the following reaction in the laboratory at 282 K: 2CH2C12(g)=CH4(g)+ CCI4(g) When she introduced 6.98x102 moles of CH,Ch(g) into a 1.00 liter container, she found the equilibrium concentration of CH,Cl2(g) to be 4.62x10³ M. Calculate the equilibrium constant, K, she obtained for this reaction. K. =arrow_forwardA chemical engineer is studying the following reaction: CH₂(g) + 2H₂S(g) → CS₂(g) + 4H₂(g) At the temperature the engineer picks, the equilibrium constant K for this reaction is 1.7 × 10³. р The engineer charges ("fills") four reaction vessels with methane and hydrogen sulfide, and lets the reaction begin. He then measures the composition of the mixture inside each vessel from time to time. His first set of measurements are shown in the table below. Predict the changes in the compositions the engineer should expect next time he measures the compositions. reaction vessel A B compound CH4 H₂S CS₂ H₂ CHA H₂S CS₂ H₂ pressure 5.65 atm 3.56 atm 5.77 atm 7.93 atm 4.69 atm 1.62 atm 6.73 atm 11.81 atm OO expected change in pressure ↑ increase ↑ increase ↑ increase ↑ increase ↑ increase ↑ increase ↑ increase ↑ increase olo ↓decrease ↓decrease ↓ decrease ↓decrease ↓ decrease ↓decrease ↓ decrease ↓ decrease (no change) (no change) (no change) (no change) (no change) (no change) (no change) (no…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY