Arielle is a risk-averse traveler who is planning a trip to Canada. She is planning on carrying $400 in her backpack. Walking the streets of Canada, however, can be dangerous and there is some chance that she will have her backpack stolen. If she is only carrying cash and her backpack is stolen, she will have no money ($0). The probability that her backpack is stolen is 1/5. Finally assume that her preferences over money can be represented by the utility function U(x)=(x)^0.5 Suppose that she has the option to buy traveler’s checks. If her backpack is stolen and she is carrying traveler’s checks then she can have those checks replaced at no cost. National Express charges a fee of $p per $1 traveler’s check. In other words, the price of a $1 traveler’s check is $(1+p). If the purchase of traveler’s checks is a fair bet, then we know that the purchase of traveler checks will not change her expected income. Show that if the purchase is a fair bet, then the price (1+p) = $1.25.
Arielle is a risk-averse traveler who is planning a trip to Canada. She is planning on carrying $400 in her backpack. Walking the streets of Canada, however, can be dangerous and there is some chance that she will have her backpack stolen. If she is only carrying cash and her backpack is stolen, she will have no money ($0). The probability that her backpack is stolen is 1/5. Finally assume that her preferences over money can be represented by the utility function U(x)=(x)^0.5
Suppose that she has the option to buy traveler’s checks. If her backpack is stolen and she is carrying traveler’s checks then she can have those checks replaced at no cost. National Express charges a fee of $p per $1 traveler’s check. In other words, the
If the purchase of traveler’s checks is a fair bet, then we know that the purchase of traveler checks will not change her expected income. Show that if the purchase is a fair bet, then the price (1+p) = $1.25.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps