Question
An electron is in a three-dimensional box. The x- and z-sides of the box have the same length, but the y-side has a different length. The two lowest energy levels are 2.24 eV and 3.47 eV, and the degeneracy of each of these levels (including the degeneracy due to the electron spin) is two. (a) What are the nX, nY, and nZ quantum numbers for each of these two levels? (b) What are the lengths LX, LY, and LZ for each side of the box? (c) What are the energy, the quantum numbers, and the degeneracy (including the spin degeneracy) for the next higher energy state?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps
Knowledge Booster
Similar questions
- An electron is confined to a one-dimensional region in which its ground-state (n = 1) energy is 1.45 eV. (a) What is the length L of the region? nm(b) What energy input is required to promote the electron to its first excited state? eVarrow_forwardChapter 39, Problem 044 A hydrogen atom in a state having a binding energy (the energy required to remove an electron) of -1.51 eV makes a transition to a state with an excitation energy (the difference between the energy of the state and that of the ground state) of 10.200 eV. (a) What is the energy of the photon emitted as a result of the transition? What are the (b) higher quantum number and (c) lower quantum number of the transition producing this emission? Use -13.60 eV as the binding energy of an electron in the ground state. (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardA hydrogen atom is in the 6g state. (a) What is the principal quantum number? (b) What is the energy of the atom? (c) What are the values for the orbital quantum number and the magnitude of the electron's orbital angular momentum?arrow_forward
- Consider the atom having the electron configuration 1s2 2s2 2p6 3s2. Assume that the z components of both the orbital abd spin angular momenta of the electron in the 3p subshell are positive. What are the quantum numbers that describe the state of this electron. n=3 l=1 m=-1 s=1/2n=3 l=1 m=2 s=1/2n=3 l=2 m=1 s=1/2n=3 l=1 m=1 s=1/2n=3 l=2 m=2 s=-1/2 Can we say which one is correct?arrow_forwardThe L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forwardThe energies in a 2D particle-in-a-box are given by h² 8mL 2 in which the box is a square enclosure with Lx = Ly = L, and nx, ny = 1, 2, 3,... . (a) If the particle is an electron and L = 300 pm (assume three significant figures), find the value of the lowest energy level in units of 10-18 J (that is, if the energy is 5.00 × 10-18 J, you would report it as "5.00"). E n, n (n₂ ² + n₂²) y x yarrow_forward
- For a ground state Cd atom (Z = 48), how many electrons in total have an angular quantum number ℓ = 0 ?arrow_forwardAn electron is in a three-dimensional box. The xx- and zz-sides of the box have the same length, but the yy-side has a different length. The two lowest energy levels are 2.18 eVeV and 3.47 eVeV, and the degeneracy of each of these levels (including the degeneracy due to the electron spin) is two. What is the length LY for side of the box? What are the lengths LXLX, LZLZ for sides of the box? What is the energy for the next higher energy state? What are the quantum numbers for the next higher energy state? What is the degeneracy (including the spin degeneracy) for the next higher energy state?arrow_forward
arrow_back_ios
arrow_forward_ios