
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A typical electric water heater has an efficiency of
95 percent and costs $350 a year to operate at a unit cost of
electricity of $0.11/kWh. A typical heat pump-powered water
heater has a COP of 3.3 but costs about $800 more to install.
Determine how many years it will take for the heat pump
water heater to pay for its cost differential from the energy
it saves.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A house that was heated by electric resistance heaters consumed 1200 kWh of electric energy in a winter month. If this house were heated instead by a heat pump that has an average COP of 2.4, determine how much money the homeowner would have saved that month. Assume a price of $0.12/kWh for electricity.arrow_forwardAn air conditioner removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 5.25 kW. Determine the COP of this air conditioner.arrow_forwardBy supplying energy to a house at a rate of 25,000 kJ/hr, a heat pump maintains the temperature of the dwelling at 20 C when the outside air is at -10 C. If electricity costs 8 cents per kW-hr, determine the minimum theoretical operating cost to heat the house for 24 hours. $1.97 O $1.37 $1.75 O $1.51 O$1.64arrow_forward
- A heat engine has a total heat input of 1.3 kJ and a thermal efficiency of 35 percent. How much work will it produce?arrow_forwardA heat engine operates between two reservoirs at 8000 C and 200 C. One-half of the work output of the engine is used to drive a Carnot heat pump that removes heat from the cold surroundings at 20 C and transfers heat to a house maintained at 220 C. If the house is losing heat at a rate of 62,000 kJ/h, determine the minimum rate of heat supply to the heat engine required to keep the house at 220 C.arrow_forwardA nonpolluting power plant can be constructed using the temperature difference in the ocean. At the surface of the ocean in tropical climates, the average water temperature year-round is 30°C. At a depth of 305 m, the temperature is 5.4°C. Determine the maximum thermal efficiency of such a power plant.arrow_forward
- A device collects energy from the sun's rays and produces a high temperature of 95 °C. A small heat engine then uses this as a high temperature reservoir and operates at an ambient temperature of 15 °C. What is the maximum possible thermal efficiency of this heat engine? After some improvements are made to the solar energy collector, the high temperature it produces is now Tnew. If it is given that the new maximum possible thermal efficiency of the heat engine is double the previous one, what is Tnew? (Assume that the ambient temperature stays the same)arrow_forwardThe coefficient of performance of a residential heat pump is 1.6. Calculate the heating effect in kJ/s this heat pump will produce when it consumes 2 kW of electrical power.arrow_forwardConsider a building whose annual air-conditioning load is estimated to be 40,000 kWh in an area where the unit cost of electricity is RM0.10/kWh. Two air conditioners (Figure 2) are considered for the building. Air conditioner A has a seasonal average COP of 2.3 and costs RM5500 to purchase and install. Air conditioner B has a seasonal average COP of 3.6 and costs RM7000 to purchase and install. All else being equal, determine which air conditioner is a better buy. A Air cond. COP = 2.3 D Win House 40,000 kWh Figure 2 40,000 kWh B Air cond. COP = 3.6 Winarrow_forward
- A refrigeration system uses a water-cooled condenser for rejecting the waste heat. The system absorbs heat from a space at 25°F at a rate of 21,000 Btu/h. Water enters the condenser at 65°F at a rate of 1.45 lbm/s. The COP of the system is estimated to be 1.9. Determine the power input to the system in kW.arrow_forwardA heat pump keeps the house at 20°C while the ambient (outside) temperature is 0°C. from the roof and The heat loss from the walls is 3000 kJ/h per degree temperature difference between the indoor and outdoor environment. Determine the minimum theoretical power in kW required to operate the heat pump.arrow_forwardTHERMODYNAMICSarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY