
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:A total electric charge of Q is injected into a solid
conducting sphere of radius R. At the instance of
injection, the charge is uniformly distributed throughout
the sphere. Assuming that the sphere is in vacuum,
develop an expression for the electric potential inside
the sphere at a much later point in time, as a function of
distance r away from the centre of the sphere
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Asap plzzzzarrow_forwardAnimal cells have a membrane that separates the interior of the cell from the outside environment. Typically, an electric potential difference exists between the inner and outer surfaces of the membrane. Consider one such cell where the magnitude of the potential difference is 44 mV, and the outer surface of the membrane is at a higher potential than the inner surface. A potassium ion (K+) is initially just inside the cell membrane (initially at rest). How much work (in J) is required for a cell to eject the ion, so that it moves from the interior of the cell to the exterior?arrow_forwardA semicircle of radius R has charge lining its outer edge, with a charge +q uniformly distributed on one half and a charge -q uniformly distributed on the other half. The point P is located at the center of circle that describes this semicircle. At point P, find (a) the electric field. (b) the electric potential.arrow_forward
- Consider a ring of charge in the x-y plane of radius 2.7 m, centered at the origin. The charge per angle around the ring is given by dQ/dα = a (1 - cos α) (nC/rad), where a = 8.4 nC/rad. Calculate the electric potential along the z axis at z = 5.8 m, in V. Use k = 9 x 109 N m2 / C2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardA long coaxial cable carries a positive uniform volume charge density, ρ, on theinner cylinder (radius a), and a negative uniform surface charge density, σ, of thecylindrical shell (radius b). The surface charge has a magnitude so that the cable asa whole is electrically neutral. find the electric potential V atthe center of the coaxial cable, using s = infinity as a reference pointarrow_forwardConsider two separate systems with four charges of the same magnitude q = 17 µC arranged in the vertexes of a square of length h = 20 cm, see the picture below. Calculate the electric potential at the center of the square (points A and C) and at the middle of the bottom side of the square (points B and D). y y q h q h A. B The potential at point A, VA = The potential at point B, VB = The potential at point C, Vc = = The potential at point D, VĎ : q q X Units V Units V Units V Units V Units J q Units J F h C c. Ꭰ How much work is required to move a -38 µC charge from point A to point B? The work required, Wä→ß = How much work is required to move a -38 µC charge from point C to point D? The work required, Wc→D = ✓✓. ✓✓. q -q O Xarrow_forward
- Consider a uniformly charged solid sphere of radius R carrying total charge Q. Q V(R) = ATREO Derive an expression for the electric potential V(R) on the surface of the sphere? Enter your expression in terms of given quantities, the permittivity of free space €0, and rational and exact irrational numbers. Assume that the zero reference point for the potential is at the center of the sphere Incorrectarrow_forwardA charged conducting spherical shell of radius R = 3 m with total charge q = 23 μC produces the electric field given by E⃗ (r)={014πϵ0qr2r̂ forforr<Rr>R(PICTURE ATTACHED OF EQUATION) a. Enter an expression for the electric potential inside the sphere ( r < R ) in terms of the given quantities, assuming the potential is zero at infinity. V(r)= b. Calculate the electric potential, in volts, at radius r inside the charged shell. V(r) =arrow_forwardConsider two separate systems with four charges of the same magnitude q = 16 µC arranged in the vertexes of a square of length h = 35 cm, see the picture below. Calculate the electric potential at the center of the square (points A and C) and at the middle of the bottom side of the square (points B and D). y y h h А. C. h В D b- The potential at point A, VA = 2320457.1x Units v The potential at point B, Vg = 2378380.8 Units V The potential at point C, Vc = 0 Units V The potential at point D, V, = -908380.8: Units v How much work is required to move a -12 µC charge from point A to point B? The work required, WAs =|-0.7349 X Units J How much work is required to move a -12 µC charge from point C to point D? The work required, Wc-o = 10.90 Units Jarrow_forward
- SSD_W06_04 0/3 points (graded) R. +Q B R. The figure above shows a solid insulating sphere of radius R2 with charge -Q (Q > 0) distributed uniformly throughout the volume. This sphere is centered within a thin spherical shell of radius R1; a charge +Q is distributed uniformly on the surface of the spherical shell. Very far away from the sphere and the spherical shell, the electric potential is zero. Use k for Coulomb's constant. At point A on the surface of the spherical shell, what is the electric potential VA? VA = Point B is on the surface of the sphere. What is the potential difference, VB – VẠ? VB - VA = Point C is at the center of the sphere. What is the potential difference, Vo - VB? Ve - VB =arrow_forwardAn electron moving parallel to the x axis has an initial speed of 3.40 x 106 m/s at the origin. Its speed is reduced to 1.98 x 105 m/s at the point x = 2.00 cm. (a) Calculate the electric potential difference between the origin and that point. Volts (b) which point is at the higher potential? O the point x = 2.00 cm ● the origin O both have the same potentialarrow_forwardThroughout this problem, consider a charge configuration consisting of a proton fixed in place at position (x,y) = (-1nm, -1nm) and an electron fixed in place at point (x,y) = (1nm, 1nm). Draw the configuration of charges described above, and without calculation, sketch an estimate of what you believe the graph of electric potential V (x) looks like as a function along the x-axis from x = -10nm to x= 10nm. NOTE: it is helpful to draw two diagrams. One representing the location of charges in physical (x,y) space, and the other representing the function of the potential V(x), that you create by estimating the electric potential at various locations along the x-axis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON