College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A rod sits horizontally along the x-axis with a continuous uniform charge distribution such that the
linear charge density λ is 0.025 C/m, with one end of the rod at the origin and the other end of the rod
at x = 0.35m. Find the electric potential at the point on the x-axis where x = 0.45 m given that the
potential an infinite distance from the rod is defined as being equal to zero.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the electric potential created by an arc with an irregular linear charge density λ = λ*Cos(Q), distributed with a radius of r = R at point O?arrow_forwardA semicircle of radius R has charge lining its outer edge, with a charge +q uniformly distributed on one half and a charge -q uniformly distributed on the other half. The point P is located at the center of circle that describes this semicircle. At point P, find (a) the electric field. (b) the electric potential.arrow_forwardConsider a ring of charge in the x-y plane of radius 2.7 m, centered at the origin. The charge per angle around the ring is given by dQ/dα = a (1 - cos α) (nC/rad), where a = 8.4 nC/rad. Calculate the electric potential along the z axis at z = 5.8 m, in V. Use k = 9 x 109 N m2 / C2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forward
- A plastic rod has been bent into a circle of radius R = 5.03 cm. It has a charge Q, = +7.42 pC uniformly distributed along one-quarter of its circumference and a charge Q, distributed along the rest of the circumference (see the figure). With V = 0 at infinity, what is the electric potential (a) at the center C of the circle and (b) at point P, which is on the central axis of the circle at distance D = 6.91 cm from the center? -6Q1 uniformly P, Q2 R (a) Number Units (b) Number Units Click if you would likarrow_forwardA long coaxial cable carries a positive uniform volume charge density, ρ, on theinner cylinder (radius a), and a negative uniform surface charge density, σ, of thecylindrical shell (radius b). The surface charge has a magnitude so that the cable asa whole is electrically neutral. find the electric potential V atthe center of the coaxial cable, using s = infinity as a reference pointarrow_forwardAn isolated conducting sphere of radius r1 = 0.20 m is at a potential of -2000V, with charge Qo. The charged sphere is then surrounded by an uncharged conducting sphere of inner radius r2 = 0.40 m, and outer radius r3 = 0.50m, creating a spherical capacitor. (a)Draw a clear physics diagram of the problem. (b) Determine the charge Qo on the sphere while its isolated. (c)A wire is connected from the outer sphere to ground, and then removed. Determine the magnitude of the electric field in the following regions: R<r1 ; re<R < r2; r2< R < r3; r3 < R (d) Determine the magnitude of the potential difference between the sphere and the conducting shell. (e) Determine the capacitance of the spherical capacitor.arrow_forward
- A stick with a uniform linear charge density of λ = 8 nC/m lays on the x axis from x = 6 m to 10 m.Find the electric field and the electric potential at point P, at the origin, x = 0 m.arrow_forwardThe electric potential is given by the following expression: V(x, y, z) = x²yz + 2y²z, where V is in volts. Determine the electric field (magnitude and direction) at point (1, 1, 2).arrow_forwardIn a certain region of space, the electric potential is V(z,9,2) = Czy – Ar + By %3D where A, B and C are positive constants. Calculate the r, y and z components of the electric fiekd.arrow_forward
- A Uniform electric field of magnitude 300 N/m is directed parallel to the +X axis. The electric potential at the origin is equal to 150 volts. Determine the electric potential: on x-axis at x = 15 cm and x = -15 cm on y-axis at Y = 6 cm at point (6 cm, 4.5 cm)arrow_forwardA thin ring of radius R and uniformly distributed total charge q is located in the xy-plane with its center at the origin. (a) (5 stig) Show that the electric potential on the central axis (the z-axis) of a distance z from the rings center is given by, V = 1 q 4π€о √R² + 2² (b) (5 stig) Using this result, derive an expression for the electric field at any point along the z-axis.arrow_forwardA disk of radius R has a nonuniform surface charge density sigma = Cr, where C is a constant and r is measured from the center of the disk. Find (by direct integration) the potential at P.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON