Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A single-effect evaporator is being used to concentrate 10,000 kg/h of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 20°C. The evaporator is operated with steam (85% quality) at 143.27 kPa. The vacuum inside the evaporator allows the juice to boil at 75°C. Calculate (a) the steam requirements and (b) steam economy for the process. Assume the condensate is discharged at 75°C. The specific heat of the liquid feed is 4.1 kJ/(kg°C) and the concentrated product is 3.1 kJ/(kg°C).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A single effect evaporator is used to concentrate 10 000 kg / hour of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 15 ° C. The evaporator is operated on Steam (85% quality) at 143.27 kPa. The vacuum in the evaporator allows the juice to boil at 80 ° C. The specific heat of the dilute material is 4.1 kJ / (kg ° C) and the concentrate product is 3.1 kJ / (kg ° C). Count it (a) Rate of demand for steam = kg / hour. b. Steam economy if condensate temperature is released at 75 ° C = (kg water evaporated / kg steam)arrow_forwardCalculate the heat duty (Q) required to raise the temperature of 500 kg of water from 25°C to 80°C. The specific heat capacity of water (c) is 4.18 kJ/kg°C.arrow_forwardA single effect evaporator was used to concentrate 8000 kg / hr of tomato juice from 5% total solids to 30% total solids. The juice enters the Evaporator at 20 ° C. The evaporator is operated on Steam (85% quality) at 143.27 kPa. The vacuum in the evaporator allows the juice to boil at 80 ° C. The specific heat of the dilute material is 4.1 kJ / (kg ° C) and the concentrate product is 3.1 kJ / (kg ° C). Count it (a) Steam demand rate = Answerkg / hour. b. Steam economy when condensate temperature is released at 75 ° C. = Answer(kg of water evaporated / kg of steam)arrow_forward
- A single effect evaporator is used to concentrate 10 000 kg / hr of tomato juice from 5% total solids to 30% total solids. The juice enters the Evaporator at 20 ° C. The evaporator is operated on Steam (80% quality) at 143.27 kPa. The vacuum in the evaporator allows the juice to boil at 80 ° C. The specific heat of the dilute material is 4.1 kJ / (kg ° C) and the concentrate product is 3.1 kJ / (kg ° C). Count it (a) Steam demand rate = Answer kg / hour. b. Steam economy when condensate temperature is released at 75 ° C. = Answer (kg of water evaporated / kg of steam)arrow_forwardQ3(a) A stream of benzene vapor at 580 °C and 1 atm is cooled and converted to a liquid at 25 °C and latm in a continuous condenser. (i) (ii) Illustrate a completely process path for the above process. Calculate the total enthalpy change for this process.arrow_forwardTomato pulp (40% solids content) is heated by flowing it into a steam injection heater at a rate of 500 kg / hour. 85% quality steam under 180 kPa is supplied to the heater at a rate of 40 kg / hour. If it is assumed that the heat exchanger efficiency is 85% and the initial slurry specific heat is 3.2 kJ / (kg K), the slurry specific heat during the heating process corresponds to the function Cp = Cpw (water fraction) + Cps (solids fraction). a. Determine the temperature of the product leaving the heater when the initial temperature is 35 ° C. =....° C. b. Determine the total solids fraction of the product after heating. = ...%arrow_forward
- A single effect evaporator was used to concentrate 8000 kg / hr of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 15 ° C. The evaporator is operated on Steam (85% quality) at 143.27 kPa. The vacuum in the evaporator allows the juice to boil at 75 ° C. The specific heat of the dilute material is 4.1 kJ / (kg ° C) and the concentrate product is 3.1 kJ / (kg ° C). Count it (a) Steam demand rate = kg / hour. b. Steam economy when condensate temperature is released at 75 ° C. = (kg of water evaporates / kg of steam)arrow_forwardA single effect evaporator is used to concentrate 10 000 kg / hr of tomato juice from 5% total solids to 30% total solids. The juice enters the evaporator at 15 ° C. The evaporator is operated on Steam (80% quality) at 143.27 kPa. The vacuum in the evaporator allows the juice to boil at 75 ° C. The specific heat of the dilute material is 4.1 kJ / (kg ° C) and the concentrate product is 3.1 kJ / (kg ° C). Count it a. Steam demand rate = kg / hour. b. Steam economy when condensate temperature is released at 75 ° C. = (kg of water evaporates / kg of steam)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The