A rod of mass M = 3.25 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 65 g, moving with speed v = 5.63 m/s, strikes the rod at angle θ = 55° from the normal at a distance D = 2/3 L, where L = 1.25 m, from the point of rotation and sticks to the rod after the collision. a) What is the initial angular momentum of the ball, in kilogram meters squared per second, right before the collision relative to the pivot point of the rod? b)What is the total moment of inertia If with respect to the hinge, of the rod-ball-system after the collision, in terms of the variables from the problem statement? c) What is the angular speed ωf of the system immediately after the collision, in radians per second?
A rod of mass M = 3.25 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 65 g, moving with speed v = 5.63 m/s, strikes the rod at angle θ = 55° from the normal at a distance D = 2/3 L, where L = 1.25 m, from the point of rotation and sticks to the rod after the collision.
a) What is the initial
b)What is the total moment of inertia If with respect to the hinge, of the rod-ball-system after the collision, in terms of the variables from the problem statement?
c) What is the angular speed ωf of the system immediately after the collision, in radians per second?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps