A put option in finance allows you to sell a share of stock at a given price in the future. There are different types of put options. A European put option allows you to sell a share of stock at a given price, called the exercise price, at a particular point in time after the purchase of the option. For example, suppose you purchase a six-month European put option for a share of stock with an exercise price of $26. If six months later, the stock price per share is $26 or more, the option has no value. If in six months the stock price is lower than $26 per share, then you can purchase the stock and immediately sell it at the higher exercise price of $26. If the price per share in six months is $22.50, you can purchase a share of the stock for $22.50 and then use the put option to immediately sell the share for $26. Your profit would be the difference, $26 − $22.50 = $3.50 per share, less the cost of the option. If you paid $1.00 per put option, then your profit would be $3.50 − $1.00 = $2.50 per share. The point of purchasing a European option is to limit the risk of a decrease in the per-share price of the stock. Suppose you purchased 200 shares of the stock at $28 per share and 100 six-month European put options with an exercise price of $26. Each put option costs $1. (a) Using data tables, construct a model that shows the value of the portfolio with options and without options for a share price in six months between $20 and $29 per share in increments of $1.00. What is the benefit of the put options on the portfolio value for the different share prices? For subtractive or negative numbers use a minus sign even if there is a + sign before the blank (Example: -300). If you answer is zero, enter “0”. Share Price Benefit of Options $20 $ $21 $ $22 $ $23 $ $24 $ $25 $ $26 $ $27 $ $28 $ $29 $
A put option in finance allows you to sell a share of stock at a given price in the future. There are different types of put options. A European put option allows you to sell a share of stock at a given price, called the exercise price, at a particular point in time after the purchase of the option. For example, suppose you purchase a six-month European put option for a share of stock with an exercise price of $26. If six months later, the stock price per share is $26 or more, the option has no value. If in six months the stock price is lower than $26 per share, then you can purchase the stock and immediately sell it at the higher exercise price of $26. If the price per share in six months is $22.50, you can purchase a share of the stock for $22.50 and then use the put option to immediately sell the share for $26. Your profit would be the difference, $26 − $22.50 = $3.50 per share, less the cost of the option. If you paid $1.00 per put option, then your profit would be $3.50 − $1.00 = $2.50 per share. The point of purchasing a European option is to limit the risk of a decrease in the per-share price of the stock. Suppose you purchased 200 shares of the stock at $28 per share and 100 six-month European put options with an exercise price of $26. Each put option costs $1.
(a) | Using data tables, construct a model that shows the value of the portfolio with options and without options for a share price in six months between $20 and $29 per share in increments of $1.00. What is the benefit of the put options on the portfolio value for the different share prices? For subtractive or negative numbers use a minus sign even if there is a + sign before the blank (Example: -300). If you answer is zero, enter “0”. | ||||||||||||||||||||||
|
Step by step
Solved in 3 steps with 2 images