College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A positive lens has a focal length of 15 cm. An object is located 36 cm from the lens.
a) How far from the lens is the image?
b) Is the image real or virtual, upright or inverted?
c) Trace three rays from the top of the object to confirm your results.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 6.25 mm high firefly sits on the axis of, and 12.9 cm in front of, the thin lens A, whose focal length is 6.79 cm. Behind lens A there is another thin lens, lens B, with a focal length of 23.9 cm. The two lenses share a common axis and are 56.3 cm apart. a) Is the image of the firefly that lens B forms real or virtual?. b) How far from lens B is this image located? Express the answer as a positive number. c) What is the height of this image? Express the answer as a positive number. d) Is this image upright or inverted with respect to the firefly?arrow_forwardIn the following three scenarios, an object is located on one side of a converging lens. In each case, you must determine if the lens forms an image of this object. If it does, you also must determine the following. whether the image is real or virtual whether the image is upright or inverted the image's location, q the image's magnification, M The focal length is f = 60.0 cm for this lens. Set both q and M to zero if no image exists. Note: If q appears to be infinite, the image does not exist (but nevertheless set q to 0 when entering your answers to that particular scenario). (a) The object lies at position 60.0 cm. (Enter the value for q in cm.) q= cmM= Select all that apply to part (a). realvirtualuprightinvertedno image (b) The object lies at position 7.06 cm. (Enter the value for q in cm.) q= cmM= Select all that apply to part (b). realvirtualuprightinvertedno image (c) The object lies at position 300 cm. (Enter the value for q in cm.) q= cmM= Select all that…arrow_forwardTwo thin lenses with focal lengths of magnitude 15.0 cm, the first diverging and the second converging, are placed 12.00 cm apart. An object 3.00 mm tall is placed 5.50 cm to the left of the first (diverging) lens. Where is the image formed by the first lens located? Please provide a detailed explanation of the process. How far from the object is the final image formed? Please describe the steps taken to reach to your conclusion.arrow_forward
- A 1.0-cmcm-tall object is 9.0 cmcm in front of a converging lens that has a 40 cmcm focal length. Calculate the image position. Express your answer with the appropriate units. Enter positive value if the image is on the other side from the lens and negative value if the image is on the same side as the object. Calculate the image height. Express your answer with the appropriate unitsarrow_forwardA person looks at a gem using a converging lens with a focal length of 13.8 cm. The lens forms a virtual image 33.1 cm from the lens. Find the magnification. Describe the image. 1. real, upright, larger 2. real, inverted, larger 3. virtual, upright, larger 4. real, inverted, smaller 5. virtual, inverted, larger 6. real, upright, smaller 7. virtual, inverted, smaller 8. virtual, upright, smallerarrow_forwardWhat is the focal length of a makeup mirror that produces a magnification of 1.53 when a person’s face is 11.8 cm away? (a) Set-up the table for known and unknown quantities. (b) What is the focal length?arrow_forward
- A person looks at a gem using a converging lens with a focal length of 13.8 cm. The lens forms a virtual image 33.1 cm from the lens. Find the magnification. Describe the image. 1. real, upright, larger 2. real, inverted, larger 3. virtual, upright, larger 4. real, inverted, smaller 5. virtual, inverted, larger 6. real, upright, smaller 7. virtual, inverted, smaller 8. virtual, upright, smallerarrow_forwardA 7.75 mm high chocolate chip is placed on the axis of, and 13.9 cm from, a lens with a focal length of 6.91 cm. If it can be determined, is the chocolate chip's image real or virtual? virtual real cannot be determined How high is the image? Express the answer as a positive quantity. image height: mmarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON