College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A parallel plate capacitor consists of two rectangular, horizontally oriented plates, each with an area of 4.00 cm2, and separated by a distance of 0.300 mm. If the magnitude of the charge on each capacitor is 5.00 nC, what is the magnitude of the electric field at a height of 0.800 cm between both plates?
Expert Solution
arrow_forward
Step 1
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The positive and negative plates of a parallel-plate capacitor have an area of 1.60 cm by 1.60 cm. Their surface charge densities are +1.00×10-6 C/m2and -1.00×10-6 C/m2, respectively. A proton moving parallel to the plates enters the middle of the space between them at a speed of 2.65×106 m/s. Assuming the field outside the capacitor is 0 and the field inside is uniform, how far to the side will the proton's path have deviated when it gets to the far end of the capacitor?arrow_forward3. A uniform electric field Eis directed along the x-axis between two parallel plates of charge separated by 10 cm. A +20 µC point charge of mass 2 x 10-1ºg is released from rest at a point A next to the positive plate and accelerates to a point B next to the negative plate. Find the speed of the particle at B. 10 стarrow_forwardTwo pieces of tape are stuck together, and then ripped apart, forming an electric dipole with one piece of tape at +0.20nC, the other at -0.20nC, held 3.0cm apart from each other. What is the electric field at a point positioned 10.0cm from the positive charge and 13.0cm from the negative? If a capacitor has an electric field with a magnitude of 1 microNewton/Coulomb exactly halfway between its positive and negative plates, then how much charge is on its positive plate?arrow_forward
- Please asaparrow_forwardA proton is projected horizontally midway between two parallel plates that are separated by 0.47 cm. The uniform electric field has magnitude 6.0 × 105 N/C between the plates. If the plates are 5.6 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field. The gravitational force on the proton can be neglected. O 6.2 x 106 m/s 12 x 106 m/s 11 x 106 m/s 7.4 x 106 m/s 8.7 x 106 m/s Tw Earrow_forwardIn this example, we will analyze the motion of an electron that is released in an electric field. The terminals of a 100 V battery are connected to two large, parallel, horizontal plates 1.0 cm apart. The resulting charges on the plates produce an electric field E in the region between the plates that is very nearly uniform and has magnitude E = 3.0×104 N/C. Suppose the lower plate has positive charge, so that the electric field is vertically upward, as shown in (Figure 1). (The thin pink arrows represent the electric field.) If an electron is released from rest at the upper plate, what is its speed just before it reaches the lower plate? How much time is required for it to reach the lower plate? The mass of an electron is mẹ = 9.11 x 10-31 kg. The thin arrows represent the uniform electric field. 1.0 cm 100 V In this example, suppose a proton (mp = 1.67 × 10-27 kg) is released from rest at the positive plate. What is its speed just before it reaches the negative plate? Express your…arrow_forward
- In a typical television or in an older computer picture tube (CRT), the electrons that strike the screen to form an image are accelerated between two charged plates that have a potential difference of 2.5×104 V. The plates are separated by a distance of 1.3 cm. Assuming that there is a uniform electric field between the plates, calculate the strength of the field.arrow_forwardA uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 1.50 × 10-6 s. a. Find the magnitude of the electric field. b. Find the speed of the proton when it strikes the negatively charged plate. Hint: Use both kinematics and electric field equations in solving the problemarrow_forwardThe figure shows two parallel plates that are 2.0 cm apart. The electric field between them is 3.4 × 104 N/C. An electron is launched at a 45° angle and with initial speed v, from the positive plate. What is the maximum V, such that the electron won't hit the negative plate? 2.0 cm 45°arrow_forward
- The membrane surrounding a living cell consists of an inner and an outer wall that are separated by a small space. Assumne that the membrane acts like a parallel plate capacitor in which the effective charge density on the inner and outer walls has a magnitude of 7.1x 10-6 C/m2.(a) What is the magnitude of the electric field within the cell membrane? (b) Find the magnitude of the electric force that would be exerted on a potassium ion (K*; charge = +e) placed inside the membrane. (a) Number Units (b) Number Unitsarrow_forwardA small plastic ball with a mass of 6.5 x 10-3 kg and with a charge of +0.15 uC is suspended from insulating thread and hangs between the plates of capacitor. The ball is in equilibrium with the thread making an angle of 30 degrees with respect to vertical. The ball is displaced by 0.15 m from its vertical position. What is the magnitude of the electric field between the two plates?arrow_forwardTwo thin conducting plates, each 28 cm on a side, are situated parallel to one another and 5 mm apart. If 8·1011 electrons are moved from one plate to the other, what is the electric field between the plates? (b) Calculate the surface charge density of the plates. (c) What is the electric field between the plates?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON