Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A cylindrical electrical heating element is used to heat up a baking oven. The heating element bears a voltage of 120 V/m, and has an electrical resistance of 1000 Ω/m. A ceramic pipe of inside radius rin = 2 mm, and outside radius rout = 5 mm encases the heating element. Thermal conductivity of the ceramic is k = 0.2 W/m-K. Given that the oven air temperature is T∞ = 180oC and convection coefficient h = 10 W/m2-K, find the temperature on the inside of the ceramic pipe.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The front window of an automobile has a thickness of 4 mm and is defrosted by the passage of a stream of hot air through the inner surface. The thermal conductivity of glass is around 0.78 W/(m oC). Assume the ambient air temperature is -10°C and the external convection coefficient is 65W/(m2 K). If the hot air blowing to defog the glass internally is at 40 ºC and the internal convection coefficient corresponds to 30 W/(m2 K), the internal surface temperatures will be _____________. However, if the car accelerates and maintains high speed, the external convection coefficient should _____________ [increase or decrease?] and if the condition is maintained long enough the temperature of the inner surface of the glass should _____________ [increase or decrease?].arrow_forwardConsider modeling a temperature sensor as a sphere having a thermal conductivity of 91 W/m-K, a density of 8900 kg/m³, and a specific heat of 444 J/kg-K. The sensor is in an environment where the heat transfer coefficient is 100 W/m²-K. Determine the maximum allowable diameter of the sensor if the 90% response time to a step-change in the fluid temperature, T∞, must be: • 10 second • 1 second . 0.01 secondarrow_forwardPlease include a fbd of the problemarrow_forward
- Calculate the heat loss through a 100-ft² wall with an inside temperature of 65°F and an outside temperature of 35°F. Assume the exterior wall is composed of 2- in. of material having a 'k' factor of 0.80, and 2-in. of insulation having a conductance of 0.16. RTotal = 8.75 & Q = 342-Btu/hr RTotal = 9.2 & Q = 399-Btu/hr RTotal = 8.75 & Q = 399-Btu/hr RTotal = 9.2 & Q = 342-Btu/hr Hide hint for Question 3 Utilize the (RTotal = 1/C + x1/k1) equation.arrow_forwardA cylindrical pipe is made up of two materials. The inner material A, which has thermal conductivity of ka, has inner radius ra and outer radius re. On the other hand, the outer material B, which has thermal conductivity of kb, has inner radius re and outer radius rb. Contact resistance between the two materials is known to be hc. The temperature at the inner radius of material A (at ra) is Ta, while the temperature at the outer radius of material B (at ri) is T3. Find an expression for the temperature at the inner radius of material B (at r.) in terms of the given variables.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY