A block of mass m= 2.0 kg is released from rest on an inclined plane at a height of h = 1.5 m. It moves down the rough incline with slope theta= 30.0°and continues on the horizontal frictionless surface. As shown in the figure, there is a spring with negligible mass and force constant k = 300 N/m. The coefficient of kinetic friction between the block and the incline is 0.250 What is the speed of the block when it gets down on the horizontal surface before it touches the spring? The box continues to move on the horizontal surface and compresses the spring. What will be the maximum compression of the spring?

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter7: Dry Friction
Section: Chapter Questions
Problem 7.81P: Calculate the horizontal force P required to push the 85-lb lawn mower at constant speed. The center...
icon
Related questions
Question

A block of mass m= 2.0 kg is released from rest on an inclined plane at a height of h = 1.5 m. It moves down the rough incline with slope theta= 30.0°and continues on the horizontal frictionless surface. As shown in the figure, there is a spring with negligible mass and force constant k = 300 N/m. The coefficient of kinetic friction between the block and the incline is 0.250

What is the speed of the block when it gets down on the horizontal surface before it touches the spring?

The box continues to move on the horizontal surface and compresses the spring. What will be the maximum compression of the spring?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L