Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 7.37 g sample of an unknown salt (MM = 116.82 g/mol) is dissolved in 150.00 g water in a coffee cup calorimeter. Before placing the sample in the water, the temperature of the salt and water is 23.72°C. After the salt has completely dissolved, the temperature of the solution is 28.54°C. Given that 157.37 g of solution increased in temperature by 4.82 °C, what quantity of heat, in J, was gained by the solution? Assume the specific heat of the solution is the same as water, 4.184 J/g・°C.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 11.8 g of a soluble ionic compound is dissolved in 91.6 mL of water in a coffee-cup calorimeter, and the temperature of the solution changes from 24.80°C to 29.14°C. Assume the water has a density of 1.00 g/mL and that the total mass of the solution has the specific heat of water (4.186 J/g.K). Calculate the enthalpy change for the dissolution of this substance in kJ.arrow_forwardWhen a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 0.90 g of CaCl2(s) are dissolved in 102.10 g of water, the temperature of the solution increases from 22.90 to 24.48 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.79 J/°C.Based on the student's observation, calculate the enthalpy of dissolution of CaCl2(s) in kJ/mol. Assume the specific heat of the solution is equal to the specific heat of water.ΔHdissolution = kJ/molarrow_forward4. In a coffee-cup calorimeter, 3.20 g of NH4NO3 is mixed with 86.00 g of water at an initial temperature of 23.53°C. After dissolution of the salt, the final temperature of the calorimeter contents is 21.32°C. Assuming the solution has a heat capacity of 4.184 J/g °C and assuming no heat loss to the calorimeter, calculate the enthalpy change for the dissolution of NH4NO3 in units of kJ/mol.arrow_forward
- In a coffee cup calorimeter, 50.0 mL of 1.00 M NaOH and 50.00 mL of 1.00 M HCl are mixed. Both solutions were originally at 24.6 C. After the reaction, the final temperature is 31.3 C. Given that the density of NaCl solution is 1.038 g/mL and the specific heat of NaCl solution is 3.87, calculate the change in enthalpy of neutralization per mole for the reaction of HCl with NaOH. Assume that no heat is lost to the surroundings.arrow_forwardIn a coffee cup calorimeter, 40.0 mL of 0.33 M nitric acid (HNO3) and 40.0 mL of 0.33 M potassium hydroxide (KOH) are mixed to observe the heat released during the neutralization reaction. Based on the data in the table, what is the enthalpy of the neutralization reaction between HNO3 and KOH? Initial temperature in the calorimeter (°C) Final temperature in the calorimeter (°C) Final mass of the neutralized solution (g) Calorimeter constant (J/C)) 21.3 23.5 79.74 4.57arrow_forward100.0 ml of 0.115 m potassium hydroxide solution is mixed with 75.0 ml of 0.245 M nitric acid solution in a coffee cup calorimeter. Before mixing, both solutions are initially at 23.85 C;after mixing, the temperature of the mixture in the coffee cup calorimeter increases to 26.30 C. Determine the enthalpy change(delta h) of reaction in kJ/mol for the reaction as written below. KOH(aq) + HNO3(aq) ⮕ KNO3(aq) + H2O(aq) Assume the resulting solution density is 1.03 g/mL. Specific heat of solution=4.20 J/g Carrow_forward
- Consider two 50.0 mL volumes of water, one at 20.0 °C and the other at 100.0 °C. The temperature of the combined solutions when mixed in a calorimeter is measured to be 52.4 °C. What are the temperature changes for each of the volumes of water?arrow_forwardA 10.7 ml sample of 0.947 M NaOH is mixed with 15.9 mL of 0.955 M HOCI in a coffee-cup calorimeter. The enthalpy of the reaction, written with the lowest whole-number coefficients, is -55.8 kJ. Both solutions are at 23.0°C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive. The specific heat of water is 4.18 J/(g °C). Temperature =arrow_forwardWhen 6.54 grams of Zn is placed in 500.0 mL of 1.00 M CuSO4(aq) in a coffee cup calorimeter, it reacts completely to displace copper. The temperature of the solution rises from 20.0˚C to 30.4˚C. Assume the coffee cup itself gains no heat and that the solution has the same density (1.00 g/mL) and specific heat (4.184 J/g˚C) as pure water. (a) How much heat does the solution gain during this reaction? (in J)arrow_forward
- A chemist dissolved an 14.2-g sample of KOH in 100.0 grams of water in a coffee cup calorimeter. When she did so, the water temperature increased by 30.5 ∘C. Based on this, how much heat energy was required to dissolve the sample of KOH? Assume the specific heat of the solution is 4.184 J/g⋅°C. ?= kJ Calculate the heat of solution for KOH in kJ/mol.arrow_forwardYou have 8.99 g sample of an unknown salt (MM = 116.82 g/mol). It is dissolved in 150.00 g water in a coffee cup calorimeter. Before placing the sample in the water, the temperature of the salt and water is 23.72°C. After the salt has completely dissolved, the temperature of the solution is 28.54°C. What is the Mass inside calorimeter (g)? Change in Temp inside calorimeter (C)? How much Heat gained (J)? Total Heat? How many mols of the unknown salt? What is the change in empalthy?arrow_forwardA 6.55 g sample of an unknown salt (MM = 116.82 g/mol) is dissolved in 150.00 g water in a coffee cup calorimeter. Before placing the sample in the water, the temperature of the salt and water is 23.72°C. After the salt has completely dissolved, the temperature of the solution is 28.54°C. Wht is the change in teperature in celcios inside the calometer? was the dissolution process endothermic or exothermic? how much heat, in J, was hained b the solution? assume the specific heat of the solution is the same as water, 4.184 J/g. celciusarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY