Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
**Linear Transformations and Matrix Representations**

8. For each of the linear transformations below, write the matrix of the linear transformation.

a. \( T: \vec{x} \in \mathbb{R}^3 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = 
\begin{bmatrix} 
2x_1 - 4x_2 \\ 
x_1 - x_3 \\ 
-x_2 + 3x_3 \\ 
3x_1 - 2x_2 
\end{bmatrix}
\]

b. \( T: \vec{x} \in \mathbb{R}^2 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = 
\begin{bmatrix} 
x_1 + 4x_2 \\ 
x_2 
\end{bmatrix}
\]

c. Consider a polynomial in \( P_2 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 \). Define a linear operator \( T \) by \( T(p(t)) = (2t^2 - t + 6)p(t) \) in \( P_4 \). Find the matrix of the transformation. [Hint: See Example 2.]

d. Consider a polynomial in \( P_3 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \). Find the matrix of the linear transformation taking this vector into \( P_2 \) defined by the derivative operator \( \frac{d}{dt}[p(t)] \).

e. Consider the function defined as \( y(x) = a_1 e^x + a_2 e^{-x} + a_3 e^{5x} + a_4 e^{-7x} \). Write the matrix of the linear transformation defined by the derivative operator \( \frac
expand button
Transcribed Image Text:**Linear Transformations and Matrix Representations** 8. For each of the linear transformations below, write the matrix of the linear transformation. a. \( T: \vec{x} \in \mathbb{R}^3 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by: \[ T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 2x_1 - 4x_2 \\ x_1 - x_3 \\ -x_2 + 3x_3 \\ 3x_1 - 2x_2 \end{bmatrix} \] b. \( T: \vec{x} \in \mathbb{R}^2 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by: \[ T \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + 4x_2 \\ x_2 \end{bmatrix} \] c. Consider a polynomial in \( P_2 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 \). Define a linear operator \( T \) by \( T(p(t)) = (2t^2 - t + 6)p(t) \) in \( P_4 \). Find the matrix of the transformation. [Hint: See Example 2.] d. Consider a polynomial in \( P_3 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \). Find the matrix of the linear transformation taking this vector into \( P_2 \) defined by the derivative operator \( \frac{d}{dt}[p(t)] \). e. Consider the function defined as \( y(x) = a_1 e^x + a_2 e^{-x} + a_3 e^{5x} + a_4 e^{-7x} \). Write the matrix of the linear transformation defined by the derivative operator \( \frac
Expert Solution
Check Mark
Step 1

Advanced Math homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,