Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
### Educational Content: Understanding Linear Transformations and Standard Matrices

#### Problem Statement:
Assume that \( T \) is a linear transformation. Find the standard matrix of \( T \).

#### Given:
\[ T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \]

- \( T(\mathbf{e_1}) = (1, 9) \)
- \( T(\mathbf{e_2}) = (-6, 2) \)
- \( T(\mathbf{e_3}) = (9, -5) \)

where \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) are the columns of the \( 3 \times 3 \) identity matrix.

#### Task:
Find the matrix \( A = \begin{bmatrix} \quad \end{bmatrix} \)

*(Type an integer or decimal for each matrix element.)*

#### Explanation:
The transformation \( T \) maps vectors from \( \mathbb{R}^3 \) to \( \mathbb{R}^2 \). The standard matrix \( A \) representing this transformation can be constructed using the images of the standard basis vectors \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) under \( T \).

The columns of matrix \( A \) are the images of these standard basis vectors. Therefore, the standard matrix \( A \) is constructed as follows:

\[
A = \begin{bmatrix}
1 & -6 & 9 \\
9 & 2 & -5 \\
\end{bmatrix}
\]
expand button
Transcribed Image Text:### Educational Content: Understanding Linear Transformations and Standard Matrices #### Problem Statement: Assume that \( T \) is a linear transformation. Find the standard matrix of \( T \). #### Given: \[ T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \] - \( T(\mathbf{e_1}) = (1, 9) \) - \( T(\mathbf{e_2}) = (-6, 2) \) - \( T(\mathbf{e_3}) = (9, -5) \) where \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) are the columns of the \( 3 \times 3 \) identity matrix. #### Task: Find the matrix \( A = \begin{bmatrix} \quad \end{bmatrix} \) *(Type an integer or decimal for each matrix element.)* #### Explanation: The transformation \( T \) maps vectors from \( \mathbb{R}^3 \) to \( \mathbb{R}^2 \). The standard matrix \( A \) representing this transformation can be constructed using the images of the standard basis vectors \( \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \) under \( T \). The columns of matrix \( A \) are the images of these standard basis vectors. Therefore, the standard matrix \( A \) is constructed as follows: \[ A = \begin{bmatrix} 1 & -6 & 9 \\ 9 & 2 & -5 \\ \end{bmatrix} \]
Expert Solution
Check Mark
Step 1q

Advanced Math homework question answer, step 1, image 1

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,