Principles of Modern Chemistry
Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question

PLEASE ANSWER ALL PARTS!!!

7.66 (a) Consider a two-phase system, where one phase is pure
liquid A and the second phase is an ideal gas mixture of A vapor
with inert gas B (assumed insoluble in liquid A). The presence of
gas B changes μA, the chemical potential of liquid A, because B
increases the total pressure on the liquid phase. However, since
the vapor is assumed ideal, the presence of B does not affect μg,
the chemical potential of A in the vapor phase [see Eq. (6.4)].
Because of its effect on μ¼, gas B affects the liquid-vapor equi-
librium position, and its presence changes the equilibrium vapor
pressure of A. Imagine an isothermal infinitesimal change dP in
the total pressure P of the system. Show that this causes a change
dPA in the vapor pressure of A given by
А
dPA
V¹m.A
Vm.APA
const. T
(7.38)
dP
V8
m,A
RT
Equation (7.38) is often called the Gibbs equation. Because V
m,A'
m,A
is much less than Vg the presence of gas B at low or moder-
ate pressures has only a small effect on the vapor pressure of A.
(b) The vapor pressure of water at 25°C is 23.76 torr. Calculate
the vapor pressure of water at 25°C in the presence of 1 atm of
inert ideal gas insoluble in water.
expand button
Transcribed Image Text:7.66 (a) Consider a two-phase system, where one phase is pure liquid A and the second phase is an ideal gas mixture of A vapor with inert gas B (assumed insoluble in liquid A). The presence of gas B changes μA, the chemical potential of liquid A, because B increases the total pressure on the liquid phase. However, since the vapor is assumed ideal, the presence of B does not affect μg, the chemical potential of A in the vapor phase [see Eq. (6.4)]. Because of its effect on μ¼, gas B affects the liquid-vapor equi- librium position, and its presence changes the equilibrium vapor pressure of A. Imagine an isothermal infinitesimal change dP in the total pressure P of the system. Show that this causes a change dPA in the vapor pressure of A given by А dPA V¹m.A Vm.APA const. T (7.38) dP V8 m,A RT Equation (7.38) is often called the Gibbs equation. Because V m,A' m,A is much less than Vg the presence of gas B at low or moder- ate pressures has only a small effect on the vapor pressure of A. (b) The vapor pressure of water at 25°C is 23.76 torr. Calculate the vapor pressure of water at 25°C in the presence of 1 atm of inert ideal gas insoluble in water.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning