4) Consider the half-wave rectifier circuit shown below. The ac input voltage to the circuit is a 60 Hz signal from a power transformer. MR752 Vout +6.3 V (rms) 47000 µF R. a) What is the peak output voltage across the load resistor, assuming RL = 10 2? Account for the voltage drop across the diode (look it up!). b) Estimate the voltage ripple, assuming the same load resistance.

Electric Motor Control
10th Edition
ISBN:9781133702818
Author:Herman
Publisher:Herman
Chapter59: Motor Startup And Troubleshooting Basics
Section: Chapter Questions
Problem 12SQ: How is a solid-state diode tested? Explain.
icon
Related questions
Question
4) Consider the half-wave rectifier circuit shown below. The ac input voltage to
the circuit is a 60 Hz signal from a power transformer.
MR752
Vout
+6.3 V (rms)
47000 µF
RL
a) What is the peak output voltage across the load resistor, assuming RL = 10
2? Account for the voltage drop across the diode (look it up!).
b) Estimate the voltage ripple, assuming the same load resistance.
Transcribed Image Text:4) Consider the half-wave rectifier circuit shown below. The ac input voltage to the circuit is a 60 Hz signal from a power transformer. MR752 Vout +6.3 V (rms) 47000 µF RL a) What is the peak output voltage across the load resistor, assuming RL = 10 2? Account for the voltage drop across the diode (look it up!). b) Estimate the voltage ripple, assuming the same load resistance.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Single Phase Controlled and Uncontrolled Rectifiers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Electric Motor Control
Electric Motor Control
Electrical Engineering
ISBN:
9781133702818
Author:
Herman
Publisher:
CENGAGE L
Electricity for Refrigeration, Heating, and Air C…
Electricity for Refrigeration, Heating, and Air C…
Mechanical Engineering
ISBN:
9781337399128
Author:
Russell E. Smith
Publisher:
Cengage Learning