University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Question
0.400 kg hammer is moving horizontally at 7.50 m/s when it strikes a nail and comes to rest after driving it 1.00 cm into a board.
(a)
Calculate the duration of the impact in seconds. (Enter a number.)
s
s
(b)
What was the average force in newtons exerted downward on the nail? (Enter a number.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
I;m not sure how to fix this answer, it will not allow 10^3.
Solution
by Bartleby Expert
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
I;m not sure how to fix this answer, it will not allow 10^3.
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped (without bouncing)? Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped (without bouncing)?arrow_forwardStarting with equations m1v1=m1v1cos1+m2v2cos2 and 0=m1v1cos1+m2v2sin2 for conservation of momentum in the x- and y -directions and assuming that one object is originally stationary, prove that for an elastic collision of two objects of equal masses, 12mv12=12mv22+mv1v2cos(12) as discussed in the text.arrow_forwardA 2-kg object moving to the right with a speed of 4 m/s makes a head-on, elastic collision with a 1-kg object that is initially at rest. The velocity of the 1-kg object after the collision is (a) greater than 4 m/s, (b) less than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impossible to say based on the information provided.arrow_forward
- A 2.00-kg particle has a velocity (2.00i3.00j)m/s, and a 3.00-kg particle has a velocity (1.00i+6.00j)m/s. Find (a) the velocity of the center of mass and (b) the total momentum of the system.arrow_forwardCheck Your Understanding Suppose the initial velocities were not at right angles to each other. How would this change both the physical result and the mathematical analysis of the collision?arrow_forwardA ball of mass 250 g is thrown with an initial velocity of 25 m/s at an angle of 30 with the horizontal direction. Ignore air resistance. What is the momentum of the ball after 0.2 s? (Do this problem by finding the components of the momentum first, and then constructing the magnitude and direction of the momentum vector from the components.)arrow_forward
- From what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forwardA 65.0-kg basketball player jumps vertically and leaves the floor with a velocity of 1.80 m/s upward, (a) What impulse does the player experience? (b) What force does the floor exert on the player before the jump? (c) What is the total average force exerted by the floor on the player if the player is in contact with the floor for 0.450 s during the jump?arrow_forwardThe magnitude of the net force exerted in the x direction on a 2.50-kg particle varies in time as shown in Figure P9.10 (page 244). Find (a) the impulse of the force over the 5.00-s time interval, (b) the final velocity the particle attains if it is originally at rest, (c) its final velocity if its original velocity is 2.00im/s, and (d) the average force exerted on the particle for the time interval between 0 and 5.00 s. Figure P9.10arrow_forward
- In Section 1.4, we considered the collision of a karate expert’s hand with a concrete block. Based on the graphs in Figure 1.31, the initial downward speed of the fist with mass 0.75 kg is about -13 m/s and the collision time is approximately 25 ms. Find the impulse and the average force exerted on the block by the fist during the collision.arrow_forwardCheck Your Understanding The changes of momentum for Philae and for Comet 67/P were equal (in magnitude). Were the impulses experienced by Philae and the comet equal? How about the forces? How about the changes of kinetic energies?arrow_forwardWhen two objects collide, the impulse exerted on object 1 by object 2 is equal in magnitude and opposite and direction to the impulse exerted on object 2 by object 1: I[1on2]=I[2on1](11.8) And the change in their momenta is given by: p1=p2(11.9) Which of Newtons three laws justifies these two equations?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning