The purpose of this lab is to give researchers and students the opportunity to design an experiment that determines the effects of various factors on the effectiveness of an enzyme. For this lab, the factor that was chosen to be investigated was pH on an enzyme called peroxidase. The enzyme used in this experiment was (Approximately: 2g) of blended calf liver and could quickly show the conversion of peroxide to water and oxygen. Different bases and acids are important so that people can see how much water and oxygen can be produced. The problem of this lab would be knowledge on things like how to design and understand the steps of a created experiment and get the results hoped for. For this lab the researcher would hope to expect 2H2O2---PeroxidaseO2 + 2H2O.
In this lab new terms that are hard for some people to grasp include. Enzyme, “A substance produced by a living organism that acts as a catalyst (a substance usually used in small amounts relative to the reactants, that modifies and increases the rate of a reaction without being consumed in the process) to bring about a specific biochemical reaction”. In this lab the enzyme that would have been the blended calf liver. Activation Energy, “the minimum quantity of energy that the reacting species must possess in order to undergo a specified reaction”. Active Site, “a region on an enzyme that binds to a protein or other substance during a reaction”. Denaturation, “a process in which proteins or nucleic acids lose the
The more acidic a substance is the less oxygen it will produce when going through a chemical reaction. During the Lab “How Do Changes in pH Levels Affect Enzymes Activity”, the researcher conducted an experiment to test the effects that an acidic, neutral, and a base substance will have when combine it with hydrogen peroxide. The data table shows that HCL (acidic substance) barley produced any oxygen at all when it was combining with Hydrogen Peroxide. The pH level for HCL was 2.5; this level indicates that the substance was very acidic. When the H2O and NaOH were tested they produced more bubbles than HCL. NaoH produced a little more bubbles than HCL. The pH that NaoH produced was a 9, which is a base. H2O produced more bubbles than both substances;
These results shown from this experiment led us to conclude that enzymes work best at certain pH rates. For this particular enzyme, pH 7 worked best. When compared to high levels of pH, the lower levels worked better. The wrong level of pH can denature enzymes; therefore finding the right level is essential. The independent variable was the amount of pH, and the dependent being the rate of oxygen. The results are reliable as they are reinforced by the fact that enzymes typically work best at neutral pH
The topic of this lab is on biochemistry.This experiment was conducted to show how cells prevent the build of hydrogen peroxide in tissues. My group consisted of Lekha, Ruth, and Jason. There were used two different concentrations of hydrogen peroxide through this experiment , 1.5% and 3%. By testing two different types it is easier to understand how the H2O2 and catalase react with one another. To do this both the yeast, which was our catalase, and H2O2 were mixed together in a beaker. Each concentration was tested out twice for more accurate results . 1.5% concentrated H2O2 had an average reaction rate of 10.5 seconds while 3% concentrated H2O2 had an average reaction rate of 7.5 seconds. From this experiment we learned that by increasing the concentration of H2O2 and chemically combining it with a catalase it will speed up the reaction. Enzymes speed up chemical reactions . The independent variable in this experiment was the concentration of the H2O2. Some key vocabulary words are Catalase, enzyme, hydrogen peroxide ( H2O2), and concentration.
Enzymes are a key aspect in our everyday life and are a key to sustaining life. They are biological catalysts that help speed up the rate of reactions. They do this by lowering the activation energy of chemical reactions (Biology Department, 2011).
Research Question: What is the effect of substrate concentration (as measured in % concentration) on the rate of enzyme activity (as calculated by the dividing the measured distance in cm, +/- 0.1 cm, travelled by a substance in a manometer by the time in seconds, +/- 0.5 seconds)?
(Click on the Save a Copy button on the panel above to save your report)
In the following experiments we will measure precise amounts of potato extract as well as Phenylthiourea, combined with or without deionized water and in some instances change the temperature and observe and record the reaction. We will also investigate the different levels of prepared pH on varying samples of the potato extract and the Phenylthiourea and record the results. We will answer question such as what is the best temperature for optimum temperature reaction as well as the best pH level for the same reaction.
Organisms cannot depend solely on spontaneous reactions for the production of materials because they occur slowly and are not responsive to the organism's needs (Martineau, Dean, et al, Laboratory Manual, 43). In order to speed up the reaction process, cells use enzymes as biological catalysts. Enzymes are able to speed up the reaction through lowering activation energy. Additionally, enzymes facilitate reactions without being consumed (manual,43). Each enzyme acts on a specific molecule or set of molecules referred to as the enzyme's substrate and the results of this reaction are called products (manual 43). As a result, enzymes promote a reaction so that substrates are converted into products on a faster pace (manual 43). Most enzymes are proteins whose structure is determined by its sequence of its amino acids. Enzymes are designed to function the best under physiological conditions of PH and temperature. Any change of these variables that change the conformation of the enzyme will destroy or enhance enzyme activity(manual, 43).
Used to see if the temperature of the water is at 37oc – 40oc and if
The experiment that the class worked on was about peroxidase. Peroxidase is part of the enzyme group that presents most living organisms (Ahmed, 2013). Peroxidase interferes with the removal of hydrogen peroxide (Ahmed, 2013). Hydrogen peroxide is a toxic product that have normal metabolism before it causes any cell damages (Ahmed, 2013). Peroxidase has two substrate and both of them must present a reaction (Ahmed, 2013). One of the two substrate is H2O2 and other one just depends on the organism or the cell type (Ahmed, 2013). The substrate that the class uses is turnip extract. In the class there were five experiments to do but the class were assigned into groups and each group were going to do two experiment. The names of the experiments are: Baseline, Temperature, and pH.
I forecast that the more concentrated the hydrogen peroxide is the higher the volume of
Hold the IKI spray bottle 25 - 30 cm away from the paper towel, and mist with the IKI solution.
The purpose of this lab report is to investigate the effect of substrate concentration on enzyme activity as tested with the enzyme catalase and the substrate hydrogen peroxide at several concentrations to produce oxygen. It was assumed that an increase in hydrogen peroxide concentration would decrease the amount of time the paper circle with the enzyme catalase present on it, sowing an increase in enzyme activity. Therefore it can be hypothesised that there would be an effect on catalase activity from the increase in hydrogen peroxide concentration measured in time for the paper circle to ride to the top of the solution.
In this lab or experiment, the aim was to determine the following factors of enzymes: (1) the effects of enzymes concentration the catalytic rate or the rate of the reaction, (2) the effects of pH on a particular enzyme, an enzyme known and referred throughout this experiment as ALP (alkaline phosphate enzyme) and lastly (3) the effects of various temperatures on the reaction or catalytic rate. Throughout the experiment 8 separate cuvettes and tubes are mixed with various solutions (labeled as tables 1,3 & 4 in the apparatus/materials sections of the lab) and tested for the effects of the factors mentioned above (concentration, pH and temperature). The tubes labeled 1-4 are tested for pH with pH paper and by spectrophotometer, cuvettes 1a-4a was tested for concentration and cuvettes labeled 1b-4b was tested for temperature in four different atmospheric conditions (4ºC, 23ºC, 32ºC and 60ºC) to see how the enzyme solution was affected by the various conditions. After carrying out the procedures the results showed that the experiment followed the theory for the most part, which is that all the factors work best at its optimum level. So, the optimum pH that the enzymes reacted at was a pH of 7 (neutral), the optimum temperature that the reactions occurs with the enzymes is a temperature of 4ºC or
In the experiment we used Turnip, Hydrogen Peroxide, Distilled Water, and Guaiacol as my substances. On the first activity, Effect of Enzyme concentration of Reaction Rate for low enzyme concentration, we tested three concentrations of the turnip extract, and hydrogen peroxide. For the Turnip Extract I used 0.5 ml, 1.0 ml, and 2.0 ml. For hydrogen peroxide we used 0.1 ml, 0.2 ml, and 0.4 ml. We used a control to see the standard, and used a control for each enzyme concentration used. The control contains turnip extract and the color reagent, Guaiacol. We prepared my substrate tubes separately from the enzyme tubes. My substrate tube