Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 9.1, Problem 9.2P

(a)

To determine

Show that if"(f')2+p2=0 when substituting the given wave function into Schrödinger’s equation.

(b)

To determine

Show that (f0')2=p2, if0"=2f0'f1', if1"=2f0'f2'+(f1')2, etc.

(c)

To determine

The expression for f0(x) and f1(x) and show that the first order in recover Equation 9.10.

Blurred answer
Students have asked these similar questions
A quantum mechanical particle is confined to a one-dimensional infinite potential well described by the function V(x) = 0 in the region 0 < x < L, V(x) = ∞ elsewhere. The normalised eigenfunctions for a particle moving in this potential are: Yn(x) = √ 2 Nπ sin -X L L where n = 1, 2, 3, .. a) Write down the expression for the corresponding probability density function. Sketch the shape of this function for a particle in the ground state (n = 1). b) Annotate your sketch to show the probability density function for a classical particle moving at constant speed in the well. Give a short justification for the shape of your sketch. c) Briefly describe, with the aid of a sketch or otherwise, the way in which the quantum and the classical probability density functions are consistent with the correspondence principle for large values of n.
Start by defining 1(1) = N1 sin(7r/a) (1) b2(x) = N2 sin(2ñr/a) (2) for the infinite square well. Fix N1 and N2 so that %3D 2) You should find that p(r) is periodic in time. That is p(x, t + T) = p(x,t). Find that T, and draw p(x) for at t = 0, t = T/4, t = T/2, and T = 3T/4.
A ID harmonic oscillator of angular frequency w and charge q is in its ground state at time t=0. A perturbation H'(t) = qE eA3 (where E is ekctric field and ß is a constant) is %3D applied for a time t = t. Cakulate the probability of transition to the first and second excited state. (hint: you may expand exponential in perturbation and keep it only up to linear term)
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning