Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 33Q

(a)

To determine

The wavelength of the emission, if the Institute of Space and Astronautical Science (ISAS) in Japan proposes to place a radio telescope at an orbit higher than that of the HALCA telescope. The astronomers propose to use this combination of telescopes to study radio emission at a frequency of 43 GHz, using the molecule of silicon monoxide found in the interstellar clouds that form stars. Using this telescope in conjunction with a ground-based radio telescope, a 25000 km long baseline is obtainable. (1 GHz =1 gigahertz =109 Hz)

(b)

To determine

The angular resolution that can be achieved by assuming the baseline to be the effective diameter of a radio telescope array, if the Institute of Space and Astronautical Science (ISAS) in Japan proposes to place a radio telescope at a higher orbit than that of the HALCA telescope. Astronomers propose to use this combination of telescopes to study radio emission at a frequency of 43 GHz, from the molecule of silicon monoxide that is found in the interstellar clouds that form stars. Using this telescope in conjunction with a ground-based radio telescope, a 25000 km long baseline is obtainable. (1 GHz =1 gigahertz =109 Hz)

Blurred answer
Students have asked these similar questions
The Mars Reconnaissance Orbiter (MRO) flies at an average altitude of 280km above the Martian Surface. If its cameras have an angular resolution of 0.2 arc seconds, what is the size of the smallest objects that the MRO can detect on the Martian surface? Use the equation: S =x × d /  206265  arcseconds / radian , where S is the true size of the object, d is the distance from the detector to the object, and x is the angular size of the object. Your answer will be in km (you can ignore the radians unit (it should appear, but the equation made a simplifying assumption that dropped it out.
Voyager 2. When the Voyager 2 spacecraft was approaching towards its Neptune encounter in 1989, it was 4.5 × 10° km away from the earth. Its radio transmitter, with which it communicated with us (and we communicated with it), broadcast with a mere 22 Watt of power at the S-band (2.1 GHz). (Your home wi-fi router emits around 2 Watt at 2.4 GHz wi-fi band). Assuming the Voyager transmitter broadcast equally in all directions, (a) What signal intensity was received on the earth? (b) What electric and magnetic field amplitudes were detected? (c) How many 2.1 GHz photons were arriving per second on a radio-receiver antenna with a circular cross-section of diameter 34 meters? Two counter-propagating plane waves (a) Let E(z, t) = E0 cos(kz – wt)â + E, cos(kz + wt)x. Write E(z, t) in simpler form and find the associated magnetic field. (b) For the fields in part (a), find the instantaneous and time-averaged electric and magnetic field energy densities. (c) Let E(z, t) = E, cos(kz – wt)x + E,…
You record the spectrum of a distant star using a telescope on the ground on Earth. Upon analysing the spectrum, you discover absorption lines spaced at intervals typical of oxygen atoms. Which of the following are possible interpretations of this evidence? Select all that apply. The width of the spectral lines gives the diameter of the star The star is likely orbited by habitable planets with breathable atmospheres. The height of the spectral lines above the star's general blackbody spectral curve tells us how much oxygen is in the star The atmosphere of Earth contains oxygen The red or blueshift of the set of lines can tell us the speed of the star's motion toward or away from us
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Astronomy
    Physics
    ISBN:9781938168284
    Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
    Publisher:OpenStax
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax